A platform for research: civil engineering, architecture and urbanism
Experimental verification of seismic vibration control using a semi‐active friction tuned mass damper
A tuned mass damper (TMD) system consists of an added mass with properly functioning spring and damping elements for providing frequency‐dependent damping in a primary structure. The advantage of a friction‐type TMD, that is, a nonlinear TMD, is its energy dissipation via a friction mechanism. In contrast, the disadvantages of a passive friction TMD (PF‐TMD) are its fixed and predetermined slip load and loss of tuning and energy dissipation capabilities when it is in a stick state. A semi‐active friction TMD (SAF‐TMD) is used to overcome these disadvantages. The SAF‐TMD can adjust its slip force in response to structure motion. To verify its feasibility, a prototype SAF‐TMD was fabricated and tested dynamically using a shaking table test. A nonsticking friction control law was used to keep the SAF‐TMD activated and in a slip state in earthquakes at varying intensities. The shaking table test results demonstrated that: (i) the experimental results are consistent with the theoretical results; (ii) the SAF‐TMD is more effective than the PF‐TMD given a similar peak TMD stroke; and (iii) the SAF‐TMD can also prevent a residual TMD stroke in a PF‐TMD system. Copyright © 2011 John Wiley & Sons, Ltd.
Experimental verification of seismic vibration control using a semi‐active friction tuned mass damper
A tuned mass damper (TMD) system consists of an added mass with properly functioning spring and damping elements for providing frequency‐dependent damping in a primary structure. The advantage of a friction‐type TMD, that is, a nonlinear TMD, is its energy dissipation via a friction mechanism. In contrast, the disadvantages of a passive friction TMD (PF‐TMD) are its fixed and predetermined slip load and loss of tuning and energy dissipation capabilities when it is in a stick state. A semi‐active friction TMD (SAF‐TMD) is used to overcome these disadvantages. The SAF‐TMD can adjust its slip force in response to structure motion. To verify its feasibility, a prototype SAF‐TMD was fabricated and tested dynamically using a shaking table test. A nonsticking friction control law was used to keep the SAF‐TMD activated and in a slip state in earthquakes at varying intensities. The shaking table test results demonstrated that: (i) the experimental results are consistent with the theoretical results; (ii) the SAF‐TMD is more effective than the PF‐TMD given a similar peak TMD stroke; and (iii) the SAF‐TMD can also prevent a residual TMD stroke in a PF‐TMD system. Copyright © 2011 John Wiley & Sons, Ltd.
Experimental verification of seismic vibration control using a semi‐active friction tuned mass damper
Lin, Ging‐Long (author) / Lin, Chi‐Chang (author) / Lu, Lyan‐Ywan (author) / Ho, Yu‐Bo (author)
Earthquake Engineering & Structural Dynamics ; 41 ; 813-830
2012-04-10
18 pages
Article (Journal)
Electronic Resource
English
Vibration control of seismic structures using semi-active friction multiple tuned mass dampers
Online Contents | 2010
|Semi-active tuned mass damper building systems: Application
Online Contents | 2010
|Semi‐active tuned mass damper building systems: Design
Wiley | 2010
|