A platform for research: civil engineering, architecture and urbanism
Pathological Microenvironment‐Remodeling Nanoparticles to Alleviate Liver Fibrosis: Reversing Hepatocytes‐Hepatic Stellate Cells Malignant Crosstalk
During the onset and malignant development of liver fibrosis, the pernicious interplay between damaged hepatocytes and activated hepatic stellate cells (HSCs) induce a self‐perpetuating vicious cycle, deteriorating fibrosis progression and posing a grave threat to public health. The secretions released by damaged hepatocytes and activated HSCs interact through autocrine or paracrine mechanisms, involving multiple signaling pathways. This interaction creates a harsh microenvironment and weakens the therapeutic efficacy of single‐cell‐centric drugs. Herein, a malignant crosstalk‐blocking strategy is prompted to remodel vicious cellular interplay and reverse pathological microenvironment to put an end to liver fibrosis. Collagenases modified, bardoxolone and siTGF‐β co‐delivered nanoparticles (C‐NPs/BT) are designed to penetrate the deposited collagen barriers and further regulate the cellular interactions through upregulating anti‐oxidative stress capacity and eliminating the pro‐fibrogenic effects of TGF‐β. The C‐NPs/BT shows successful remodeling of vicious cellular crosstalk and significant disease regression in animal models. This study presents an innovative strategy to modulate cellular interactions for enhanced anti‐fibrotic therapy and suggests a promising approach for treating other chronic liver diseases.
Pathological Microenvironment‐Remodeling Nanoparticles to Alleviate Liver Fibrosis: Reversing Hepatocytes‐Hepatic Stellate Cells Malignant Crosstalk
During the onset and malignant development of liver fibrosis, the pernicious interplay between damaged hepatocytes and activated hepatic stellate cells (HSCs) induce a self‐perpetuating vicious cycle, deteriorating fibrosis progression and posing a grave threat to public health. The secretions released by damaged hepatocytes and activated HSCs interact through autocrine or paracrine mechanisms, involving multiple signaling pathways. This interaction creates a harsh microenvironment and weakens the therapeutic efficacy of single‐cell‐centric drugs. Herein, a malignant crosstalk‐blocking strategy is prompted to remodel vicious cellular interplay and reverse pathological microenvironment to put an end to liver fibrosis. Collagenases modified, bardoxolone and siTGF‐β co‐delivered nanoparticles (C‐NPs/BT) are designed to penetrate the deposited collagen barriers and further regulate the cellular interactions through upregulating anti‐oxidative stress capacity and eliminating the pro‐fibrogenic effects of TGF‐β. The C‐NPs/BT shows successful remodeling of vicious cellular crosstalk and significant disease regression in animal models. This study presents an innovative strategy to modulate cellular interactions for enhanced anti‐fibrotic therapy and suggests a promising approach for treating other chronic liver diseases.
Pathological Microenvironment‐Remodeling Nanoparticles to Alleviate Liver Fibrosis: Reversing Hepatocytes‐Hepatic Stellate Cells Malignant Crosstalk
Zhang, Ling‐Feng (author) / Deng, Wen‐Qi (author) / Wang, Xing‐Huan (author) / Huang, Qing‐Wen (author) / Liang, Su‐Qing (author) / Ding, Ze‐Quan (author) / Qi, Liang (author) / Wang, Yi (author) / Zhou, Tian‐Jiao (author) / Xing, Lei (author)
Advanced Science ; 12
2025-01-01
9 pages
Article (Journal)
Electronic Resource
English
Addressing liver fibrosis by TRAIL targetied to hepatic stellate cells
UB Braunschweig | 2016
|