A platform for research: civil engineering, architecture and urbanism
A modified response spectrum analysis procedure to determine nonlinear seismic demands of high‐rise buildings with shear walls
The standard response spectrum analysis (RSA) procedure prescribed in various design codes is commonly used by practicing engineers to determine the seismic demands for structural design purpose. In this procedure, the elastic force demands of all significant vibration modes are first combined and then reduced by a response modification factor (R) to get the inelastic design demands. Recent studies, however, have shown that the response of higher vibration modes may experience much lower level of nonlinearity, and therefore, it may not be appropriate to reduce their demand contributions by the same factor. In this study, a modified RSA procedure based on equivalent linearization concept is presented. The underlying assumptions are that the nonlinear seismic demands can be approximately obtained by summing up the individual modal responses and that the responses of each vibration mode can be approximately represented by those of an equivalent linear SDF system. Using 3 high‐rise buildings with reinforced concrete shear walls (20‐, 33‐, and 44‐story high), the accuracy of this procedure is examined. The inelastic demands computed by the nonlinear response history analysis procedure are used as benchmark. The modified RSA procedure is found to provide reasonably accurate demand estimations for all case study buildings.
A modified response spectrum analysis procedure to determine nonlinear seismic demands of high‐rise buildings with shear walls
The standard response spectrum analysis (RSA) procedure prescribed in various design codes is commonly used by practicing engineers to determine the seismic demands for structural design purpose. In this procedure, the elastic force demands of all significant vibration modes are first combined and then reduced by a response modification factor (R) to get the inelastic design demands. Recent studies, however, have shown that the response of higher vibration modes may experience much lower level of nonlinearity, and therefore, it may not be appropriate to reduce their demand contributions by the same factor. In this study, a modified RSA procedure based on equivalent linearization concept is presented. The underlying assumptions are that the nonlinear seismic demands can be approximately obtained by summing up the individual modal responses and that the responses of each vibration mode can be approximately represented by those of an equivalent linear SDF system. Using 3 high‐rise buildings with reinforced concrete shear walls (20‐, 33‐, and 44‐story high), the accuracy of this procedure is examined. The inelastic demands computed by the nonlinear response history analysis procedure are used as benchmark. The modified RSA procedure is found to provide reasonably accurate demand estimations for all case study buildings.
A modified response spectrum analysis procedure to determine nonlinear seismic demands of high‐rise buildings with shear walls
Najam, Fawad Ahmed (author) / Warnitchai, Pennung (author)
2018-01-01
19 pages
Article (Journal)
Electronic Resource
English
British Library Conference Proceedings | 2019
|Dynamic response of high-rise buildings with shear walls due to seismic forces
Springer Verlag | 2023
|An upper-bound pushover analysis procedure for estimating the seismic demands of high-rise buildings
Online Contents | 2004
|