A platform for research: civil engineering, architecture and urbanism
Effect of metal oxide nanofluids on the performance of passive solar still single slope for two different absorbent plates
This study aims to improve the performances of a solar still single slope using metal oxide nanofluid (Al2O3–water, Cu2O–water, and TiO2–water). The numerical study was carried out for the climatic conditions of Agadir, Morocco, with different concentrations of nanofluids inside a basin equipped with an absorber plate with two different absorptivities. The numerical study is based on thermal balance equations applied on different solar system components and solved using the Runge Kutta method. The numerical model is validated by comparing our results with the literature available data. A comparison study of the effect of these nanofluids on solar still productivity is done. The results show that the productivity of the solar still using nanoparticles Cu2O, TiO2, and Al2O3 are 7.38, 7.1, and 7.064 kg m−2 day−1, respectively. It is obtained that the maximum efficiency of the solar still is found to be 55.27% by using cuprous oxide nanoparticles. Furthermore, an enhancement in solar still productivity of 6.36%, 19.54%, and 33.25% is obtained by dispersing 1%, 3%, and 5% volume fraction of Cu2O nanoparticles in pure water, respectively compared to the conventional solar. Moreover, the impact of the absorptivity of the absorber plate on the solar still effectiveness is investigated. Two types of coatings are considered to change the absorber plate absorptivity. The results indicate that the efficiencies of the solar system are 58.81% and 51.77% using an absorber plate with 0.95 and 0.85 of absorptivity, respectively.
Effect of metal oxide nanofluids on the performance of passive solar still single slope for two different absorbent plates
This study aims to improve the performances of a solar still single slope using metal oxide nanofluid (Al2O3–water, Cu2O–water, and TiO2–water). The numerical study was carried out for the climatic conditions of Agadir, Morocco, with different concentrations of nanofluids inside a basin equipped with an absorber plate with two different absorptivities. The numerical study is based on thermal balance equations applied on different solar system components and solved using the Runge Kutta method. The numerical model is validated by comparing our results with the literature available data. A comparison study of the effect of these nanofluids on solar still productivity is done. The results show that the productivity of the solar still using nanoparticles Cu2O, TiO2, and Al2O3 are 7.38, 7.1, and 7.064 kg m−2 day−1, respectively. It is obtained that the maximum efficiency of the solar still is found to be 55.27% by using cuprous oxide nanoparticles. Furthermore, an enhancement in solar still productivity of 6.36%, 19.54%, and 33.25% is obtained by dispersing 1%, 3%, and 5% volume fraction of Cu2O nanoparticles in pure water, respectively compared to the conventional solar. Moreover, the impact of the absorptivity of the absorber plate on the solar still effectiveness is investigated. Two types of coatings are considered to change the absorber plate absorptivity. The results indicate that the efficiencies of the solar system are 58.81% and 51.77% using an absorber plate with 0.95 and 0.85 of absorptivity, respectively.
Effect of metal oxide nanofluids on the performance of passive solar still single slope for two different absorbent plates
Zabour, Khadija (author) / Feddaoui, M'barek (author) / Meftah, Hicham (author)
Heat Transfer ; 51 ; 3675-3695
2022-06-01
21 pages
Article (Journal)
Electronic Resource
English
Effect of Al2O3 nanoparticles on the performance of passive double slope solar still
British Library Online Contents | 2016
|IoT-based performance analysis of hybrid solar heater-double slope solar still
DOAJ | 2022
|