Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Impacts of 2020 Beirut Explosion on Port Infrastructure and Nearby Buildings
At 18:08 on August 4, 2020, a large explosion occurred at Hangar 12 in the Port of Beirut. The size of the explosion was equivalent to that of an earthquake with a local magnitude (ML) of 3.3 according to the USGS. As one of the largest nonmilitary explosions to ever impact an urban region, this event provides unprecedented opportunities to document explosion impacts on urban infrastructure. To facilitate this data collection, the Geotechnical Extreme Events Reconnaissance (GEER) Association coordinated a multiagency response directed toward the collection of perishable data of engineering interest. Two main categories of infrastructure systems were impacted: the Port of Beirut and the Beirut building stock. Within the Port, the explosion triggered a quay wall failure and flow slide, and strongly impacted grain silo structures that were in close proximity to Hangar 12. Within the city, historical masonry structures, older reinforced concrete structures, and modern high-rise structures were impacted. Through a combination of in-person inspections and street-view surveys, we collected data on structural performance (including damage to load-bearing elements) and building façades. Performance levels were classified according to procedures applied following earthquakes (for structural performance) and newly proposed procedures (for façades). We describe spatial distributions of these damage types and dependencies on source distance and location-to-explosion direction. We demonstrate that physical damages correlated with damage proxy maps produced by the Jet Propulsion Laboratory and the Earth Observatory of Singapore based on Copernicus Sentinel-1 satellite synthetic aperture radar data, with a stronger correlation with structural damage than with façade damage.
Impacts of 2020 Beirut Explosion on Port Infrastructure and Nearby Buildings
At 18:08 on August 4, 2020, a large explosion occurred at Hangar 12 in the Port of Beirut. The size of the explosion was equivalent to that of an earthquake with a local magnitude (ML) of 3.3 according to the USGS. As one of the largest nonmilitary explosions to ever impact an urban region, this event provides unprecedented opportunities to document explosion impacts on urban infrastructure. To facilitate this data collection, the Geotechnical Extreme Events Reconnaissance (GEER) Association coordinated a multiagency response directed toward the collection of perishable data of engineering interest. Two main categories of infrastructure systems were impacted: the Port of Beirut and the Beirut building stock. Within the Port, the explosion triggered a quay wall failure and flow slide, and strongly impacted grain silo structures that were in close proximity to Hangar 12. Within the city, historical masonry structures, older reinforced concrete structures, and modern high-rise structures were impacted. Through a combination of in-person inspections and street-view surveys, we collected data on structural performance (including damage to load-bearing elements) and building façades. Performance levels were classified according to procedures applied following earthquakes (for structural performance) and newly proposed procedures (for façades). We describe spatial distributions of these damage types and dependencies on source distance and location-to-explosion direction. We demonstrate that physical damages correlated with damage proxy maps produced by the Jet Propulsion Laboratory and the Earth Observatory of Singapore based on Copernicus Sentinel-1 satellite synthetic aperture radar data, with a stronger correlation with structural damage than with façade damage.
Impacts of 2020 Beirut Explosion on Port Infrastructure and Nearby Buildings
Nat. Hazards Rev.
Sadek, Salah (Autor:in) / Dabaghi, Mayssa (Autor:in) / O’Donnell, Timothy M. (Autor:in) / Zimmaro, Paolo (Autor:in) / Hashash, Youssef M. A. (Autor:in) / Stewart, Jonathan P. (Autor:in)
01.05.2022
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
DOAJ | 2021
|DOAJ | 2021
|