Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Multitechnique investigation of extruded clay brick microstructure
Despite the omnipresence of clay brick as construction material since thousands of years, fundamental knowledge about the link between composition, microstructure and mechanical performance is still scarce. In this paper, we employ a variety of advanced techniques of experimental mechanics and material characterization for extruded clay brick for masonry, that range from Scanning Electron Microscopy (SEM) coupled with Energy-dispersive X–ray Spectroscopy (EDX), Mercury Intrusion Porosimetry (MIP), to Instrumented Nanoindentation and macroscopic strength and durability tests. We find that extruded clay brick possesses a hierarchical microstructure: depending on the firing temperature, a “glassy” matrix phase, which manifests itself at sub-micrometer scales in form of neo-crystals of mullite, spinel-type phase and other accessory minerals, forms either a granular or a continuum matrix phase that hosts at sub-millimeter scale the porosity. This porous composite forms the backbone for macroscopic material performance of extruded brick, including anisotropic strength, elasticity and water absorption behavior. ; Authors gratefully acknowledge Portuguese Foundation for Science and Technology (FCT) for providing doctoral scholarship under the reference SFRH/BD/39232/2007 for Konrad J. Krakowiak. Special thanks to Dr. J. P. Castro Gomes, Centre of Materials and Building Technologies (C-MADE), University of Beira Interior for making feasible Mercury Intrusion measurements, as well as Dr. G. P. Souza for helpful guidance and advices related to this work.
Multitechnique investigation of extruded clay brick microstructure
Despite the omnipresence of clay brick as construction material since thousands of years, fundamental knowledge about the link between composition, microstructure and mechanical performance is still scarce. In this paper, we employ a variety of advanced techniques of experimental mechanics and material characterization for extruded clay brick for masonry, that range from Scanning Electron Microscopy (SEM) coupled with Energy-dispersive X–ray Spectroscopy (EDX), Mercury Intrusion Porosimetry (MIP), to Instrumented Nanoindentation and macroscopic strength and durability tests. We find that extruded clay brick possesses a hierarchical microstructure: depending on the firing temperature, a “glassy” matrix phase, which manifests itself at sub-micrometer scales in form of neo-crystals of mullite, spinel-type phase and other accessory minerals, forms either a granular or a continuum matrix phase that hosts at sub-millimeter scale the porosity. This porous composite forms the backbone for macroscopic material performance of extruded brick, including anisotropic strength, elasticity and water absorption behavior. ; Authors gratefully acknowledge Portuguese Foundation for Science and Technology (FCT) for providing doctoral scholarship under the reference SFRH/BD/39232/2007 for Konrad J. Krakowiak. Special thanks to Dr. J. P. Castro Gomes, Centre of Materials and Building Technologies (C-MADE), University of Beira Interior for making feasible Mercury Intrusion measurements, as well as Dr. G. P. Souza for helpful guidance and advices related to this work.
Multitechnique investigation of extruded clay brick microstructure
Krakowiak, Konrad J. (Autor:in) / Lourenço, Paulo B. (Autor:in) / Ulm, F. J. (Autor:in)
01.09.2011
doi:10.1111/j.1551-2916.2011.04484.x
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
DDC:
690
Multitechnique Approach to Understanding the Microstructure of Cement-Based Systems
British Library Conference Proceedings | 1995
|Online Contents | 1996
METHOD CONSTRUCTION CLAY BRICK AND STRUCTURE CLAY BRICK EASY CONSTRUCTION
Europäisches Patentamt | 2017
|METHOD CONSTRUCTION CLAY BRICK AND STRUCTURE CLAY BRICK EASY CONSTRUCTION
Europäisches Patentamt | 2017