Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Life Cycle Assessment of Boron Industry from Mining to Refined Products
Although there are a lot of studies in literature related to the life cycle assessment (LCA) of mining, there are only a few studies done on the boron mining industry. This paper presents an LCA of the boron mining industry including the extraction, beneficiation, and refinement processes. The main purpose is to identify and compare the environmental impacts associated with the production of 1 ton of refined products (boric acid, borax pentahydrate, borax decahydrate, and sodium perborate) starting from an open pit mine located in Turkey. The life cycle inventory (LCI) was obtained from the data collected from the related literature sources and the company’s reports. This cradle-to-gate analysis has been carried out using the commercial software called SimaPro employing the International Reference Life Cycle Data System (ILCD) 2011 Midpoint+ Life Cycle Impact Assessment (LCIA) method. The results showed that the environmental impact of the refinement process is critical compared to the mining and beneficiations processes. Sulphuric acid, steam, hydrogen peroxide, and sodium perborate which are used in refined boron production cause most of the impact and emission into the environment. Among the refined boron products investigated, the impact of sodium perborate is quite high.
Life Cycle Assessment of Boron Industry from Mining to Refined Products
Although there are a lot of studies in literature related to the life cycle assessment (LCA) of mining, there are only a few studies done on the boron mining industry. This paper presents an LCA of the boron mining industry including the extraction, beneficiation, and refinement processes. The main purpose is to identify and compare the environmental impacts associated with the production of 1 ton of refined products (boric acid, borax pentahydrate, borax decahydrate, and sodium perborate) starting from an open pit mine located in Turkey. The life cycle inventory (LCI) was obtained from the data collected from the related literature sources and the company’s reports. This cradle-to-gate analysis has been carried out using the commercial software called SimaPro employing the International Reference Life Cycle Data System (ILCD) 2011 Midpoint+ Life Cycle Impact Assessment (LCIA) method. The results showed that the environmental impact of the refinement process is critical compared to the mining and beneficiations processes. Sulphuric acid, steam, hydrogen peroxide, and sodium perborate which are used in refined boron production cause most of the impact and emission into the environment. Among the refined boron products investigated, the impact of sodium perborate is quite high.
Life Cycle Assessment of Boron Industry from Mining to Refined Products
Tuğçe Türkbay (Autor:in) / Bertrand Laratte (Autor:in) / Ayşenur Çolak (Autor:in) / Semra Çoruh (Autor:in) / Birol Elevli (Autor:in)
2022
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
LIFE- CYCLE ASSESSMENT OF THE ENVIRONMENTAL IMPACT ASSESSMENT OF THE MINING INDUSTRY IN MONGOLIA
BASE | 2021
|Life Cycle Assessment for Copper Products
British Library Online Contents | 2002
|Life Cycle Assessment of Geopolymer Concrete Made with Tailings from Ilmenite Mining
Springer Verlag | 2025
|