Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Estimation of global coastal sea level extremes using neural networks
Accurately predicting total sea-level including tides and storm surges is key to protecting and managing our coastal environment. However, dynamically forecasting sea level extremes is computationally expensive. Here a novel alternative based on ensembles of artificial neural networks independently trained at over 600 tide gauges around the world, is used to predict the total sea-level based on tidal harmonics and atmospheric conditions at each site. The results show globally-consistent high skill of the neural networks (NNs) to capture the sea variability at gauges around the globe. While the main atmosphere-driven dynamics can be captured with multivariate linear regressions, atmospheric-driven intensification, tide-surge and tide-tide non-linearities in complex coastal environments are only predicted with the NNs. In addition, the non-linear NN approach provides a simple and consistent framework to assess the uncertainty through a probabilistic forecast. These new and cheap methods are relatively easy to setup and could be a valuable tool combined with more expensive dynamical model in order to improve local resilience.
Estimation of global coastal sea level extremes using neural networks
Accurately predicting total sea-level including tides and storm surges is key to protecting and managing our coastal environment. However, dynamically forecasting sea level extremes is computationally expensive. Here a novel alternative based on ensembles of artificial neural networks independently trained at over 600 tide gauges around the world, is used to predict the total sea-level based on tidal harmonics and atmospheric conditions at each site. The results show globally-consistent high skill of the neural networks (NNs) to capture the sea variability at gauges around the globe. While the main atmosphere-driven dynamics can be captured with multivariate linear regressions, atmospheric-driven intensification, tide-surge and tide-tide non-linearities in complex coastal environments are only predicted with the NNs. In addition, the non-linear NN approach provides a simple and consistent framework to assess the uncertainty through a probabilistic forecast. These new and cheap methods are relatively easy to setup and could be a valuable tool combined with more expensive dynamical model in order to improve local resilience.
Estimation of global coastal sea level extremes using neural networks
Nicolas Bruneau (Autor:in) / Jeff Polton (Autor:in) / Joanne Williams (Autor:in) / Jason Holt (Autor:in)
2020
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Probabilistic Projection of Mean Sea Level and Coastal Extremes
British Library Online Contents | 2013
|Probabilistic Projection of Mean Sea Level and Coastal Extremes
Online Contents | 2013
|Analysis of Riverine and Coastal Extremes. The FLOODsite Approach
Online Contents | 2008
|