Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Microscopic Traffic Characterization of Light Rail Transit Systems at Level Crossings
The movement of the light rail vehicles (LRVs) is highly interrupted at level crossings during peak hour times, especially when the intersections are not regulated by a coordinated signal system. Traffic modelling ensures better understanding and interpretation of complex traffic interactions. This study is aimed at modelling light rail transit (LRT) system operational characteristics at level crossings in Addis Ababa City using VISSIM software. The studied scenarios at Sebategna (All Way Stop Controlled, AWSC) and CMC (Roundabout) level crossings are the baseline without LRT scenario, the actual scenario with collected LRV headways, twice arrival frequency scenario, signalized actual LRV arrival, and signalized twice actual LRV arrival. The relative comparisons among the tested scenarios depicted that significant travel time savings can be achieved in some approaches if more green time is offered to nonconflicting phases during a light rail crossing. Overall, the average additional delays at level crossings increase from the base scenario with increasing light rail crossing frequencies, and delay at the level crossing is the second important variable that contributes to the variability of train travel time at peak hours. If it is a must for an intersection to have a rail road to pass through the median, different options should be verified based on the trade-off between the operational cost of the level crossing and the cost incurred if it is grade separated.
Microscopic Traffic Characterization of Light Rail Transit Systems at Level Crossings
The movement of the light rail vehicles (LRVs) is highly interrupted at level crossings during peak hour times, especially when the intersections are not regulated by a coordinated signal system. Traffic modelling ensures better understanding and interpretation of complex traffic interactions. This study is aimed at modelling light rail transit (LRT) system operational characteristics at level crossings in Addis Ababa City using VISSIM software. The studied scenarios at Sebategna (All Way Stop Controlled, AWSC) and CMC (Roundabout) level crossings are the baseline without LRT scenario, the actual scenario with collected LRV headways, twice arrival frequency scenario, signalized actual LRV arrival, and signalized twice actual LRV arrival. The relative comparisons among the tested scenarios depicted that significant travel time savings can be achieved in some approaches if more green time is offered to nonconflicting phases during a light rail crossing. Overall, the average additional delays at level crossings increase from the base scenario with increasing light rail crossing frequencies, and delay at the level crossing is the second important variable that contributes to the variability of train travel time at peak hours. If it is a must for an intersection to have a rail road to pass through the median, different options should be verified based on the trade-off between the operational cost of the level crossing and the cost incurred if it is grade separated.
Microscopic Traffic Characterization of Light Rail Transit Systems at Level Crossings
Robel Desta (Autor:in) / Daric Tesfaye (Autor:in) / János Tóth (Autor:in)
2021
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Calgary Light Rail Transit Surface Operations and Grade-Level Crossings
British Library Online Contents | 1995
|Active Signal Priority for Light Rail Transit at Grade Crossings
British Library Online Contents | 2007
|New Standards for Control of At-Grade Light Rail Transit Crossings
British Library Online Contents | 1992
|Traffic Control Devices and Rail-Highway Crossings
NTIS | 1986
|Traffic control devices and rail-highway crossings
TIBKAT | 1986
|