Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Building Stock Models for Embodied Carbon Emissions—A Review of a Nascent Field
Building stock modeling emerges as a critical tool in the strategic reduction of embodied carbon emissions, which is pivotal in reshaping the evolving construction sector. This review provides an overall view of modern methodologies in building stock modeling, homing in on the nuances of embodied carbon analysis in construction. Examining 23 seminal papers, our study delineates two primary modeling paradigms—top-down and bottom-up—each further compartmentalized into five innovative methods. This study points out the challenges of data scarcity and computational demands, advocating for methodological advancements that promise to refine the precision of building stock models. A groundbreaking trend in recent research is the incorporation of machine learning algorithms, which have demonstrated remarkable capacity, improving stock classification accuracy by 25% and urban material quantification by 40%. Furthermore, the application of remote sensing has revolutionized data acquisition, enhancing data richness by a factor of five. This review offers a critical examination of current practices and charts a course toward an environmentally prudent future. It underscores the transformative impact of building stock modeling in driving ecological stewardship in the construction industry, positioning it as a cornerstone in the quest for sustainability and its significant contribution toward the grand vision of an eco-efficient built environment.
Building Stock Models for Embodied Carbon Emissions—A Review of a Nascent Field
Building stock modeling emerges as a critical tool in the strategic reduction of embodied carbon emissions, which is pivotal in reshaping the evolving construction sector. This review provides an overall view of modern methodologies in building stock modeling, homing in on the nuances of embodied carbon analysis in construction. Examining 23 seminal papers, our study delineates two primary modeling paradigms—top-down and bottom-up—each further compartmentalized into five innovative methods. This study points out the challenges of data scarcity and computational demands, advocating for methodological advancements that promise to refine the precision of building stock models. A groundbreaking trend in recent research is the incorporation of machine learning algorithms, which have demonstrated remarkable capacity, improving stock classification accuracy by 25% and urban material quantification by 40%. Furthermore, the application of remote sensing has revolutionized data acquisition, enhancing data richness by a factor of five. This review offers a critical examination of current practices and charts a course toward an environmentally prudent future. It underscores the transformative impact of building stock modeling in driving ecological stewardship in the construction industry, positioning it as a cornerstone in the quest for sustainability and its significant contribution toward the grand vision of an eco-efficient built environment.
Building Stock Models for Embodied Carbon Emissions—A Review of a Nascent Field
Ming Hu (Autor:in) / Siavash Ghorbany (Autor:in)
2024
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Embodied energy and carbon dioxide emissions for building materials
British Library Conference Proceedings | 1994
|Web application for calculating embodied carbon emissions in building
DataCite | 2023
|Embodied emissions — knowledge building for industry
TIBKAT | 2024
|