Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Spatial Pattern Oriented Multicriteria Sensitivity Analysis of a Distributed Hydrologic Model
Hydrologic models are conventionally constrained and evaluated using point measurements of streamflow, which represent an aggregated catchment measure. As a consequence of this single objective focus, model parametrization and model parameter sensitivity typically do not reflect other aspects of catchment behavior. Specifically for distributed models, the spatial pattern aspect is often overlooked. Our paper examines the utility of multiple performance measures in a spatial sensitivity analysis framework to determine the key parameters governing the spatial variability of predicted actual evapotranspiration (AET). The Latin hypercube one-at-a-time (LHS-OAT) sampling strategy with multiple initial parameter sets was applied using the mesoscale hydrologic model (mHM) and a total of 17 model parameters were identified as sensitive. The results indicate different parameter sensitivities for different performance measures focusing on temporal hydrograph dynamics and spatial variability of actual evapotranspiration. While spatial patterns were found to be sensitive to vegetation parameters, streamflow dynamics were sensitive to pedo-transfer function (PTF) parameters. Above all, our results show that behavioral model definitions based only on streamflow metrics in the generalized likelihood uncertainty estimation (GLUE) type methods require reformulation by incorporating spatial patterns into the definition of threshold values to reveal robust hydrologic behavior in the analysis.
Spatial Pattern Oriented Multicriteria Sensitivity Analysis of a Distributed Hydrologic Model
Hydrologic models are conventionally constrained and evaluated using point measurements of streamflow, which represent an aggregated catchment measure. As a consequence of this single objective focus, model parametrization and model parameter sensitivity typically do not reflect other aspects of catchment behavior. Specifically for distributed models, the spatial pattern aspect is often overlooked. Our paper examines the utility of multiple performance measures in a spatial sensitivity analysis framework to determine the key parameters governing the spatial variability of predicted actual evapotranspiration (AET). The Latin hypercube one-at-a-time (LHS-OAT) sampling strategy with multiple initial parameter sets was applied using the mesoscale hydrologic model (mHM) and a total of 17 model parameters were identified as sensitive. The results indicate different parameter sensitivities for different performance measures focusing on temporal hydrograph dynamics and spatial variability of actual evapotranspiration. While spatial patterns were found to be sensitive to vegetation parameters, streamflow dynamics were sensitive to pedo-transfer function (PTF) parameters. Above all, our results show that behavioral model definitions based only on streamflow metrics in the generalized likelihood uncertainty estimation (GLUE) type methods require reformulation by incorporating spatial patterns into the definition of threshold values to reveal robust hydrologic behavior in the analysis.
Spatial Pattern Oriented Multicriteria Sensitivity Analysis of a Distributed Hydrologic Model
Mehmet Cüneyd Demirel (Autor:in) / Julian Koch (Autor:in) / Gorka Mendiguren (Autor:in) / Simon Stisen (Autor:in)
2018
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Global Sensitivity Analysis of a Distributed Hydrologic Model Using Monte Carlo Simulation
British Library Conference Proceedings | 2010
|Spatial Disaggregation for Studies of Climatic Hydrologic Sensitivity
Online Contents | 1994
|Spatial Disaggregation for Studies of Climatic Hydrologic Sensitivity
British Library Online Contents | 1994
|Parameter Sensitivity Analysis For Hydrologic Simulation Models
Taylor & Francis Verlag | 1988
|