Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Intelligent Optimized Wind Turbine Cost Analysis for Different Wind Sites in Jordan
Choosing the right wind site and estimating the extracted energy of the wind turbines are essential to successfully establishing a wind farm in a specific wind site. In this paper, a method for estimating the extracted energy of the wind farms using several mathematical models is proposed. The estimating method, which was based on five wind turbines, Q1, Q2, Q3, Q4, and Q5 and three wind distribution models, gamma, Weibull, and Rayleigh, was used to suggest suitable specifications of a wind turbine for a specific wind site and maximize the extracted energy of the proposed wind farm. An optimization problem, developed for this purpose, was solved using the whale optimization algorithm (WOA). The suggested method was tested using several potential wind sites in Jordan. The proposed wind farms at these sites achieved the maximum extracted energy, maximum capacity factor (CF), and minimum levelized cost of energy (LCoE) based on the solution of the developed optimization problem. The developed model with Q3 and the Rayleigh distribution function was validated with real measurement data from several wind farms in Jordan. Error analysis showed that the difference between the measured and estimated energy was less than 20%. The study validated the provided model, which can now be utilized routinely for the assessment of wind energy potential at a specific wind site.
Intelligent Optimized Wind Turbine Cost Analysis for Different Wind Sites in Jordan
Choosing the right wind site and estimating the extracted energy of the wind turbines are essential to successfully establishing a wind farm in a specific wind site. In this paper, a method for estimating the extracted energy of the wind farms using several mathematical models is proposed. The estimating method, which was based on five wind turbines, Q1, Q2, Q3, Q4, and Q5 and three wind distribution models, gamma, Weibull, and Rayleigh, was used to suggest suitable specifications of a wind turbine for a specific wind site and maximize the extracted energy of the proposed wind farm. An optimization problem, developed for this purpose, was solved using the whale optimization algorithm (WOA). The suggested method was tested using several potential wind sites in Jordan. The proposed wind farms at these sites achieved the maximum extracted energy, maximum capacity factor (CF), and minimum levelized cost of energy (LCoE) based on the solution of the developed optimization problem. The developed model with Q3 and the Rayleigh distribution function was validated with real measurement data from several wind farms in Jordan. Error analysis showed that the difference between the measured and estimated energy was less than 20%. The study validated the provided model, which can now be utilized routinely for the assessment of wind energy potential at a specific wind site.
Intelligent Optimized Wind Turbine Cost Analysis for Different Wind Sites in Jordan
Ayman Al-Quraan (Autor:in) / Bashar Al-Mhairat (Autor:in)
2022
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
Wind turbine utilization for water pumping in Jordan
Online Contents | 2003
|Wind turbine blade designed for low-wind sites
British Library Online Contents | 2007
Dynamically optimized light weight wind turbine blades
British Library Conference Proceedings | 1996
|FLOATING WIND TURBINE PLATFORM STRUCTURE WITH OPTIMIZED TRANSFER OF WAVE AND WIND LOADS
Europäisches Patentamt | 2023
|