Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Infiltration and Anti-Filtration Recharge-Pumping Well and Laboratory Recharge Tests
Infiltration and anti-filtration recharge-pumping wells (hereinafter, referred to as IAF recharge-pumping wells) can enable rain-flood flowing in rivers or channel recharge to aquifers, in flood periods, and pump groundwater to be utilized in non-flood periods. In this study, a round IAF recharge-pumping well and a square IAF recharge-pumping well were developed, the structure and characteristic were introduced, the calculation equations of single-well recharge quantity of IAF recharge-pumping wells, in unconfined aquifers were deduced, and the steady-state flow recharge test was conducted in the laboratory. The conclusions were as follows. The theoretical equation of the single-well recharge quantity was reasonable. Compared to existing anti-filtration recharge wells, the new IAF recharge-pumping well had stronger anti-deposit and anti-scour abilities and the single-well recharge quantity increased by 400%. Compared to the square IAF recharge-pumping well, the round IAF recharge-pumping well had a better inlet flow pattern and a larger single-well recharge quantity. With an increase in the test times, the single-well recharge quantity gradually decreased and tended to be stable. The existence of the pumping pipe had a little influence on the single-well recharge quantity.
Infiltration and Anti-Filtration Recharge-Pumping Well and Laboratory Recharge Tests
Infiltration and anti-filtration recharge-pumping wells (hereinafter, referred to as IAF recharge-pumping wells) can enable rain-flood flowing in rivers or channel recharge to aquifers, in flood periods, and pump groundwater to be utilized in non-flood periods. In this study, a round IAF recharge-pumping well and a square IAF recharge-pumping well were developed, the structure and characteristic were introduced, the calculation equations of single-well recharge quantity of IAF recharge-pumping wells, in unconfined aquifers were deduced, and the steady-state flow recharge test was conducted in the laboratory. The conclusions were as follows. The theoretical equation of the single-well recharge quantity was reasonable. Compared to existing anti-filtration recharge wells, the new IAF recharge-pumping well had stronger anti-deposit and anti-scour abilities and the single-well recharge quantity increased by 400%. Compared to the square IAF recharge-pumping well, the round IAF recharge-pumping well had a better inlet flow pattern and a larger single-well recharge quantity. With an increase in the test times, the single-well recharge quantity gradually decreased and tended to be stable. The existence of the pumping pipe had a little influence on the single-well recharge quantity.
Infiltration and Anti-Filtration Recharge-Pumping Well and Laboratory Recharge Tests
Yuxi Li (Autor:in) / Wanglin Li (Autor:in) / Jiapeng He (Autor:in) / Xiaojiao Zhang (Autor:in) / Xinyi Li (Autor:in)
2018
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
RECHARGE ESTIMATION USING INFILTRATION MODELS
Taylor & Francis Verlag | 2005
|Recharge well structure and recharge construction method
Europäisches Patentamt | 2023
|Well water recharge method and well water recharge device
Europäisches Patentamt | 2024
|