Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Agro-Industrial Waste of Malt Bagasse: Perspectives on the Development of Eco-Friendly Ceramic Material
The construction sector is increasingly seeking sustainable alternatives in its processes worldwide, with a particular focus on the production of eco-friendly materials. Additionally, the improper disposal of solid waste is rapidly increasing, particularly in the agro-industry, including the waste generated from beer processing such as malt bagasse. Therefore, the objective of this study was to incorporate malt bagasse residue into ceramic materials at varying proportions (0, 2.5, 5, 10, and 15%) as a partial substitute for clay, submitted to different sintering temperatures (750, 850, 950, and 1050 °C). The raw materials, namely ceramic mass and malt bagasse, were characterized based on their chemical properties (XRF, loss of fire, and elemental analysis), physical properties (grain size, Atterberg limits), and mineralogical properties (XRD) characteristics. The properties of the ceramics, both with and without the incorporation of waste, were evaluated using dilatometry, apparent density, apparent porosity, water absorption, linear shrinkage, and tensile strength. The compositions that exhibited the best sintering temperatures were subjected to microstructural characterization using optical microscopy and X-ray diffraction (XRD). Significant differences were observed in the properties of the ceramic material, particularly in terms of linear shrinkage and apparent porosity. It was concluded that as the amount of malt bagasse residue incorporated increased, the mechanical properties of the pieces decreased. The incorporation of 15% residue resulted in the lowest performance, primarily due to a greater loss of mass. However, it should be noted that the incorporation of up to 5% malt bagasse for all the studied temperatures can still be considered acceptable, as it meets the minimum recommended value of 1.5 MPa for masonry ceramic components. This incorporation of malt bagasse contributes to both the technological and environmental aspects of civil construction.
Agro-Industrial Waste of Malt Bagasse: Perspectives on the Development of Eco-Friendly Ceramic Material
The construction sector is increasingly seeking sustainable alternatives in its processes worldwide, with a particular focus on the production of eco-friendly materials. Additionally, the improper disposal of solid waste is rapidly increasing, particularly in the agro-industry, including the waste generated from beer processing such as malt bagasse. Therefore, the objective of this study was to incorporate malt bagasse residue into ceramic materials at varying proportions (0, 2.5, 5, 10, and 15%) as a partial substitute for clay, submitted to different sintering temperatures (750, 850, 950, and 1050 °C). The raw materials, namely ceramic mass and malt bagasse, were characterized based on their chemical properties (XRF, loss of fire, and elemental analysis), physical properties (grain size, Atterberg limits), and mineralogical properties (XRD) characteristics. The properties of the ceramics, both with and without the incorporation of waste, were evaluated using dilatometry, apparent density, apparent porosity, water absorption, linear shrinkage, and tensile strength. The compositions that exhibited the best sintering temperatures were subjected to microstructural characterization using optical microscopy and X-ray diffraction (XRD). Significant differences were observed in the properties of the ceramic material, particularly in terms of linear shrinkage and apparent porosity. It was concluded that as the amount of malt bagasse residue incorporated increased, the mechanical properties of the pieces decreased. The incorporation of 15% residue resulted in the lowest performance, primarily due to a greater loss of mass. However, it should be noted that the incorporation of up to 5% malt bagasse for all the studied temperatures can still be considered acceptable, as it meets the minimum recommended value of 1.5 MPa for masonry ceramic components. This incorporation of malt bagasse contributes to both the technological and environmental aspects of civil construction.
Agro-Industrial Waste of Malt Bagasse: Perspectives on the Development of Eco-Friendly Ceramic Material
João Pedro da Silva Costa Andrade (Autor:in) / Daiane Cecchin (Autor:in) / Carlos Maurício Fontes Vieira (Autor:in) / Geovana Carla Girondi Delaqua (Autor:in) / Flávio Castro da Silva (Autor:in) / Leonardo da Silva Hamacher (Autor:in) / Tulane Rodrigues da Silva (Autor:in) / Mugahed Amran (Autor:in) / Juliana Lobo Paes (Autor:in) / Cristina Moll Hüther (Autor:in)
2023
Aufsatz (Zeitschrift)
Elektronische Ressource
Unbekannt
Metadata by DOAJ is licensed under CC BY-SA 1.0
DOAJ | 2020
|Soil Stabilization Using Agro-industrial Waste
TIBKAT | 2024
|Soil Stabilization Using Agro-industrial Waste
Springer Verlag | 2023
|Environment-friendly baking-free process for waste ceramic mixed material
Europäisches Patentamt | 2023
|