Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Abstract A kaolin containing 31wt.% halloysite and a relatively pure kaolin were selected to study the effects of halloysite on the dissolution behavior of precursors and the formation of geopolymers. The Al and Si concentrations in the leached solutions were studied by inductively coupled plasma-optical emission spectrometry (ICP-OES). The reaction process of metakaolin–activator mixtures was monitored by isothermal conduction calorimetry (ICC) while the reaction products were examined by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and mercury intrusion porosity (MIP). Results showed that the halloysite containing kaolin and its metakaolin possessed higher Si and Al dissolution rate than the purer kaolin and its metakaolin. When mixed with sodium silicate activator at 20°C, the presence of halloysite in kaolin led to a higher geopolymerization rate of metakaolin as reflected by the heat evolution rate. The presence of halloysite improved the reactivity of metakaolin but did not change the geopolymerization pathway under 20°C air curing and 80°C steam curing conditions. The products from the two metakaolins had a similar XRD characteristic (i.e. a typically amorphous diffraction). Only a minor difference in the pore distribution and the porosity was found between those products from the two sources of metakaolins.
Abstract A kaolin containing 31wt.% halloysite and a relatively pure kaolin were selected to study the effects of halloysite on the dissolution behavior of precursors and the formation of geopolymers. The Al and Si concentrations in the leached solutions were studied by inductively coupled plasma-optical emission spectrometry (ICP-OES). The reaction process of metakaolin–activator mixtures was monitored by isothermal conduction calorimetry (ICC) while the reaction products were examined by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and mercury intrusion porosity (MIP). Results showed that the halloysite containing kaolin and its metakaolin possessed higher Si and Al dissolution rate than the purer kaolin and its metakaolin. When mixed with sodium silicate activator at 20°C, the presence of halloysite in kaolin led to a higher geopolymerization rate of metakaolin as reflected by the heat evolution rate. The presence of halloysite improved the reactivity of metakaolin but did not change the geopolymerization pathway under 20°C air curing and 80°C steam curing conditions. The products from the two metakaolins had a similar XRD characteristic (i.e. a typically amorphous diffraction). Only a minor difference in the pore distribution and the porosity was found between those products from the two sources of metakaolins.
Effects of halloysite in kaolin on the formation and properties of geopolymers
Cement and Concrete Composites ; 34 ; 709-715
08.02.2012
7 pages
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
Effects of halloysite in kaolin on the formation and properties of geopolymers
Online Contents | 2012
|Halloysite reinforced 3D-printable geopolymers
Elsevier | 2022
|Strength and Microstructural Properties of Mechanically-Activated Kaolin Geopolymers
Tema Archiv | 2012
|Effect of Thai Kaolin on properties of agricultural ash blended geopolymers
Online Contents | 2014
|