Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Composite ceramic material with low thermal expansion coefficient and preparation method thereof
The invention discloses a composite ceramic material with a low thermal expansion coefficient and a preparation method thereof, and the preparation method comprises the following steps: mixing four raw material powders of MgO, Al2O3, SiO2 and ZrO2 according to a ratio to obtain mixed powder A; dispersing the mixed powder A into a ball milling medium to form mixed slurry, and performing wet ball milling on the mixed slurry to obtain ball-milled slurry; drying and sieving the ball-milled slurry to obtain mixed powder B; tabletting and molding the mixed powder B by using a press machine to obtain a block raw material; and putting the block raw material into a high-temperature furnace, and carrying out in-situ solid-phase reaction to obtain the low-thermal-expansion-coefficient composite ceramic material generated by the in-situ reaction. The cordierite/zirconium silicate composite ceramic material with a low thermal expansion coefficient is directly prepared by adopting the oxide powder as a raw material through an in-situ solid-phase reaction method, and has the advantages of low density, uniform two-phase distribution, thermal expansion close to that of a SiC composite material matrix and low thermal conductivity.
本发明公开了一种低热膨胀系数的复合陶瓷材料及其制备方法,制备方法为:将MgO、Al2O3、SiO2和ZrO2四种原料粉按照比例混合,得到混和粉末A;将混和粉末A分散到球磨介质中形成混合料浆,将所述混合料浆进行湿法球磨,得到球磨后的浆料;将球磨后的浆料进行干燥、过筛,得到混合粉体B;将混合粉体B使用压力机压片成型,得到块体原料;将块体原料放入高温炉中进行原位固相反应,得到原位反应生成的低热膨胀系数复合陶瓷材料。本发明通过采用氧化物粉末为原料,通过原位固相反应法直接制备得到低热膨胀系数的堇青石/硅酸锆复合陶瓷材料,具有密度低、两相分布均匀、与SiC复合材料基体热膨胀接近和低热导率的优点。
Composite ceramic material with low thermal expansion coefficient and preparation method thereof
The invention discloses a composite ceramic material with a low thermal expansion coefficient and a preparation method thereof, and the preparation method comprises the following steps: mixing four raw material powders of MgO, Al2O3, SiO2 and ZrO2 according to a ratio to obtain mixed powder A; dispersing the mixed powder A into a ball milling medium to form mixed slurry, and performing wet ball milling on the mixed slurry to obtain ball-milled slurry; drying and sieving the ball-milled slurry to obtain mixed powder B; tabletting and molding the mixed powder B by using a press machine to obtain a block raw material; and putting the block raw material into a high-temperature furnace, and carrying out in-situ solid-phase reaction to obtain the low-thermal-expansion-coefficient composite ceramic material generated by the in-situ reaction. The cordierite/zirconium silicate composite ceramic material with a low thermal expansion coefficient is directly prepared by adopting the oxide powder as a raw material through an in-situ solid-phase reaction method, and has the advantages of low density, uniform two-phase distribution, thermal expansion close to that of a SiC composite material matrix and low thermal conductivity.
本发明公开了一种低热膨胀系数的复合陶瓷材料及其制备方法,制备方法为:将MgO、Al2O3、SiO2和ZrO2四种原料粉按照比例混合,得到混和粉末A;将混和粉末A分散到球磨介质中形成混合料浆,将所述混合料浆进行湿法球磨,得到球磨后的浆料;将球磨后的浆料进行干燥、过筛,得到混合粉体B;将混合粉体B使用压力机压片成型,得到块体原料;将块体原料放入高温炉中进行原位固相反应,得到原位反应生成的低热膨胀系数复合陶瓷材料。本发明通过采用氧化物粉末为原料,通过原位固相反应法直接制备得到低热膨胀系数的堇青石/硅酸锆复合陶瓷材料,具有密度低、两相分布均匀、与SiC复合材料基体热膨胀接近和低热导率的优点。
Composite ceramic material with low thermal expansion coefficient and preparation method thereof
一种低热膨胀系数的复合陶瓷材料及其制备方法
ZHAO ZIFAN (Autor:in) / LEE GUN-WOO (Autor:in) / FENG JING (Autor:in) / RUAN ZIYANG (Autor:in)
24.03.2023
Patent
Elektronische Ressource
Chinesisch
IPC:
C04B
Kalk
,
LIME
Near-zero expansion coefficient ceramic composite material and preparation method thereof
Europäisches Patentamt | 2021
|Composite material with adjustable thermal expansion coefficient and preparation method thereof
Europäisches Patentamt | 2022
|Low-thermal-expansion-coefficient multiphase ceramic and preparation method thereof
Europäisches Patentamt | 2020
|High-entropy ceramic material with high thermal expansion coefficient and preparation method
Europäisches Patentamt | 2024
|Europäisches Patentamt | 2020
|