Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
High-entropy microwave dielectric ceramic with high-dielectric aluminum-doped perovskite structure and preparation method of high-entropy microwave dielectric ceramic
The invention discloses a high-entropy microwave dielectric ceramic with a high-dielectric aluminum-doped perovskite structure and a preparation method of the high-entropy microwave dielectric ceramic, and belongs to the technical field of ceramic materials in the communication field. The chemical general formula of the high-entropy microwave dielectric ceramic is (Zn < 1/6 > Ba < 1/6 > Ca < 1/6 > Sr < 1/6 > La < 1/3 >) Ti < 1-x > Al < x > O < 3 >, wherein x is equal to 0-0.1. Based on the unique effect of high entropy, the high entropy concept is introduced into the perovskite structure microwave dielectric ceramic for the first time to try to regulate and control the dielectric property, and the aluminum-doped high-entropy microwave dielectric ceramic is successfully synthesized by controlling the sintering temperature, the reaction time, the doping content and other process parameters. The dielectric constant is 74-91, the dielectric loss is 0.001-0.002, the temperature coefficient of resonance frequency is 175-217 ppm/DEG C, and excellent microwave dielectric properties are obtained. The obtained high-dielectric microwave dielectric ceramic is expected to be applied to mobile terminals, communication base stations and the like.
本发明公开了一种高介电铝掺杂型钙钛矿结构高熵微波介质陶瓷及其制备方法,属于通信领域的陶瓷材料技术领域。所述高熵微波介质陶瓷的化学通式为(Zn1/6Ba1/6Ca1/6Sr1/6La1/3)Ti1‑xAlxO3,其中:x=0‑0.1。本发明基于高熵的独特效应,首次将高熵概念引入钙钛矿结构微波介质陶瓷去尝试调控介电性能,通过控制烧结温度、反应时间及掺杂含量等工艺参数成功合成了铝掺杂型高熵微波介质陶瓷。其介电常数为74‑91,介电损耗为0.001‑0.002,谐振频率温度系数为175‑217ppm/℃,获得了优异的微波介电性能。本发明获得的高介电微波介质陶瓷,有望应用于移动终端和通信基站等。
High-entropy microwave dielectric ceramic with high-dielectric aluminum-doped perovskite structure and preparation method of high-entropy microwave dielectric ceramic
The invention discloses a high-entropy microwave dielectric ceramic with a high-dielectric aluminum-doped perovskite structure and a preparation method of the high-entropy microwave dielectric ceramic, and belongs to the technical field of ceramic materials in the communication field. The chemical general formula of the high-entropy microwave dielectric ceramic is (Zn < 1/6 > Ba < 1/6 > Ca < 1/6 > Sr < 1/6 > La < 1/3 >) Ti < 1-x > Al < x > O < 3 >, wherein x is equal to 0-0.1. Based on the unique effect of high entropy, the high entropy concept is introduced into the perovskite structure microwave dielectric ceramic for the first time to try to regulate and control the dielectric property, and the aluminum-doped high-entropy microwave dielectric ceramic is successfully synthesized by controlling the sintering temperature, the reaction time, the doping content and other process parameters. The dielectric constant is 74-91, the dielectric loss is 0.001-0.002, the temperature coefficient of resonance frequency is 175-217 ppm/DEG C, and excellent microwave dielectric properties are obtained. The obtained high-dielectric microwave dielectric ceramic is expected to be applied to mobile terminals, communication base stations and the like.
本发明公开了一种高介电铝掺杂型钙钛矿结构高熵微波介质陶瓷及其制备方法,属于通信领域的陶瓷材料技术领域。所述高熵微波介质陶瓷的化学通式为(Zn1/6Ba1/6Ca1/6Sr1/6La1/3)Ti1‑xAlxO3,其中:x=0‑0.1。本发明基于高熵的独特效应,首次将高熵概念引入钙钛矿结构微波介质陶瓷去尝试调控介电性能,通过控制烧结温度、反应时间及掺杂含量等工艺参数成功合成了铝掺杂型高熵微波介质陶瓷。其介电常数为74‑91,介电损耗为0.001‑0.002,谐振频率温度系数为175‑217ppm/℃,获得了优异的微波介电性能。本发明获得的高介电微波介质陶瓷,有望应用于移动终端和通信基站等。
High-entropy microwave dielectric ceramic with high-dielectric aluminum-doped perovskite structure and preparation method of high-entropy microwave dielectric ceramic
一种高介电铝掺杂型钙钛矿结构高熵微波介质陶瓷及其制备方法
MIAO YANG (Autor:in) / SU TENG (Autor:in) / WEI ZHIYANG (Autor:in) / CHEN HUANLE (Autor:in) / MA CHAO (Autor:in) / GAO FENG (Autor:in)
15.12.2023
Patent
Elektronische Ressource
Chinesisch
IPC:
C04B
Kalk
,
LIME
Europäisches Patentamt | 2024
|Europäisches Patentamt | 2024
|Europäisches Patentamt | 2024
|Perovskite structure high-entropy dielectric ceramic and preparation method thereof
Europäisches Patentamt | 2022
|