Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Biological ceramic product and mold-free manufacturing method thereof
According to the biological ceramic product and the mold-free manufacturing method thereof, biological ceramic slurry is adopted, and the biological ceramic product is prepared through 3D printing equipment. Wherein the biological ceramic slurry comprises biological ceramic powder and polylactic acid modified chitosan; the biological ceramic powder comprises a polylactic acid/polyethylene glycol/polylactic acid triblock copolymer; a push plate is arranged in a coating device of the 3D printing equipment, and shear force is formed on slurry in the machining process. Low-viscosity printing with the solid content as high as 76.9% is achieved by adjusting the types and proportions of the components in the biological ceramic slurry and the structure and processing parameters of 3D printing equipment, the viscosity of the slurry is as low as 1.12 Pa.s at the shearing rate of 200 s <-1 >, and the density of a ceramic product obtained after sintering is as high as 99.2% and the precision is as high as 20 microns.
本申请公开了生物陶瓷产品及其无模具制造方法,采用生物陶瓷浆料、通过3D打印设备,制备得到生物陶瓷产品。其中,生物陶瓷浆料包括生物陶瓷粉末和聚乳酸修饰壳聚糖;生物陶瓷粉末包括聚乳酸/聚乙二醇/聚乳酸三嵌段共聚物;3D打印设备的涂覆装置中设有推板,在加工的过程中对浆料形成剪切力。本申请通过调整生物陶瓷浆料中的组分种类及其比例、3D打印设备的结构和加工参数,实现了固含量高达76.9%的低粘度打印,在200s‑1的剪切速率下、浆料的粘度低至1.12Pa·s,且烧结之后得到的陶瓷产品的致密度高达99.2%,精度高至20μm。
Biological ceramic product and mold-free manufacturing method thereof
According to the biological ceramic product and the mold-free manufacturing method thereof, biological ceramic slurry is adopted, and the biological ceramic product is prepared through 3D printing equipment. Wherein the biological ceramic slurry comprises biological ceramic powder and polylactic acid modified chitosan; the biological ceramic powder comprises a polylactic acid/polyethylene glycol/polylactic acid triblock copolymer; a push plate is arranged in a coating device of the 3D printing equipment, and shear force is formed on slurry in the machining process. Low-viscosity printing with the solid content as high as 76.9% is achieved by adjusting the types and proportions of the components in the biological ceramic slurry and the structure and processing parameters of 3D printing equipment, the viscosity of the slurry is as low as 1.12 Pa.s at the shearing rate of 200 s <-1 >, and the density of a ceramic product obtained after sintering is as high as 99.2% and the precision is as high as 20 microns.
本申请公开了生物陶瓷产品及其无模具制造方法,采用生物陶瓷浆料、通过3D打印设备,制备得到生物陶瓷产品。其中,生物陶瓷浆料包括生物陶瓷粉末和聚乳酸修饰壳聚糖;生物陶瓷粉末包括聚乳酸/聚乙二醇/聚乳酸三嵌段共聚物;3D打印设备的涂覆装置中设有推板,在加工的过程中对浆料形成剪切力。本申请通过调整生物陶瓷浆料中的组分种类及其比例、3D打印设备的结构和加工参数,实现了固含量高达76.9%的低粘度打印,在200s‑1的剪切速率下、浆料的粘度低至1.12Pa·s,且烧结之后得到的陶瓷产品的致密度高达99.2%,精度高至20μm。
Biological ceramic product and mold-free manufacturing method thereof
生物陶瓷产品及其无模具制造方法
WANG MIN (Autor:in) / YANG RONGXIANG (Autor:in) / ZHU RONGLING (Autor:in) / ZHANG BIN (Autor:in)
12.04.2024
Patent
Elektronische Ressource
Chinesisch
IPC:
C04B
Kalk
,
LIME
/
B28B
Formgeben von Ton oder anderen keramischen Stoffzusammensetzungen, Schlacke oder von Mischungen, die zementartiges Material enthalten, z.B. Putzmörtel
,
SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS, SLAG OR MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
/
B33Y
ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
,
Additive (generative) Fertigung, d. h. die Herstellung von dreidimensionalen [3D] Bauteilen durch additive Abscheidung, additive Agglomeration oder additive Schichtung, z. B. durch 3D- Drucken, Stereolithografie oder selektives Lasersintern
NONMAGNETIC CERAMIC MOLD AND MANUFACTURING METHOD THEREOF
Europäisches Patentamt | 2021
|Silicon carbide ceramic product and non-mold casting method thereof
Europäisches Patentamt | 2015
|Europäisches Patentamt | 2023
|DUAL CERAMIC MOLD AND METHOD FOR MANUFACTURING METAL PRODUCT HAVING NANOPORES
Europäisches Patentamt | 2018
|Europäisches Patentamt | 2024
|