Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
MnO-coated core-shell structure fine grain energy storage dielectric ceramic material, preparation method and application of MnO-coated core-shell structure fine grain energy storage dielectric ceramic material
The invention belongs to the technical field of electronic ceramic energy storage capacitor materials, and particularly relates to a MnO-coated'core-shell 'structure fine-grain energy storage dielectric ceramic material, a preparation method and application of the MnO-coated'core-shell' structure fine-grain energy storage dielectric ceramic material. According to the dielectric ceramic material BBT, due to the good dielectric property, micro-nano BBT powder particles are selected as a core part material, the ion radiuses of Mn < 2 + > and Ti < 4 + > are close, manganese occupies the titanium site in barium titanate more easily in the substitution process, when high-valence titanium is replaced by low-valence manganese, defects can be formed in ceramic crystals, and therefore the dielectric constant is reduced; mn < 3 + > and Mn < 4 + > can effectively capture electrons, so that the carrier concentration in the dielectric ceramic material is reduced, the dielectric ceramic material has low dielectric loss, and the resistivity of the dielectric ceramic material is improved; based on the design of the microstructure, the microstructure of the ceramic can be optimized, the dielectric loss is reduced, and the energy storage density of the ceramic is improved.
本发明属于电子陶瓷储能电容器材料技术领域,具体涉及一种MnO包覆的“芯‑壳”结构细晶储能介电陶瓷材料、制备方法及其应用。本发明介电陶瓷材料BBT,由于具有良好的介电性能,因此选择微纳米BBT粉体颗粒作为“芯”部材料,而Mn2+和Ti4+的离子半径接近,锰在取代的过程中更容易占据钛酸钡中的钛位,当低价的锰取代高价的钛时,会在陶瓷晶体中形成缺陷,从而使介电常数减小;而Mn3+和Mn4+可以有效地捕获电子,从而使介电陶瓷材料中的载流子浓度降低,可以使介电陶瓷材料具有低的介电损耗,并且提高介电陶瓷材料的电阻率;基于这种微观结构的设计,能够优化陶瓷微观形貌,降低介电损耗,提高陶瓷的储能密度。
MnO-coated core-shell structure fine grain energy storage dielectric ceramic material, preparation method and application of MnO-coated core-shell structure fine grain energy storage dielectric ceramic material
The invention belongs to the technical field of electronic ceramic energy storage capacitor materials, and particularly relates to a MnO-coated'core-shell 'structure fine-grain energy storage dielectric ceramic material, a preparation method and application of the MnO-coated'core-shell' structure fine-grain energy storage dielectric ceramic material. According to the dielectric ceramic material BBT, due to the good dielectric property, micro-nano BBT powder particles are selected as a core part material, the ion radiuses of Mn < 2 + > and Ti < 4 + > are close, manganese occupies the titanium site in barium titanate more easily in the substitution process, when high-valence titanium is replaced by low-valence manganese, defects can be formed in ceramic crystals, and therefore the dielectric constant is reduced; mn < 3 + > and Mn < 4 + > can effectively capture electrons, so that the carrier concentration in the dielectric ceramic material is reduced, the dielectric ceramic material has low dielectric loss, and the resistivity of the dielectric ceramic material is improved; based on the design of the microstructure, the microstructure of the ceramic can be optimized, the dielectric loss is reduced, and the energy storage density of the ceramic is improved.
本发明属于电子陶瓷储能电容器材料技术领域,具体涉及一种MnO包覆的“芯‑壳”结构细晶储能介电陶瓷材料、制备方法及其应用。本发明介电陶瓷材料BBT,由于具有良好的介电性能,因此选择微纳米BBT粉体颗粒作为“芯”部材料,而Mn2+和Ti4+的离子半径接近,锰在取代的过程中更容易占据钛酸钡中的钛位,当低价的锰取代高价的钛时,会在陶瓷晶体中形成缺陷,从而使介电常数减小;而Mn3+和Mn4+可以有效地捕获电子,从而使介电陶瓷材料中的载流子浓度降低,可以使介电陶瓷材料具有低的介电损耗,并且提高介电陶瓷材料的电阻率;基于这种微观结构的设计,能够优化陶瓷微观形貌,降低介电损耗,提高陶瓷的储能密度。
MnO-coated core-shell structure fine grain energy storage dielectric ceramic material, preparation method and application of MnO-coated core-shell structure fine grain energy storage dielectric ceramic material
一种MnO包覆的“芯-壳”结构细晶储能介电陶瓷材料、制备方法及其应用
MA RONG (Autor:in) / SONG SHUO (Autor:in) / ZHAO WEIWEI (Autor:in) / HUANG ZHUONAN (Autor:in) / ZHAO WEIXING (Autor:in) / HU DENGWEI (Autor:in) / PANG TONGYAO (Autor:in) / XI MIN (Autor:in)
11.10.2024
Patent
Elektronische Ressource
Chinesisch
Europäisches Patentamt | 2022
|Europäisches Patentamt | 2024
|Europäisches Patentamt | 2023
|Europäisches Patentamt | 2015
|Europäisches Patentamt | 2024
|