Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
RADIOWAVE ABSORBER, METHOD FOR PRODUCING THE SAME, AND HIGH FREQUENCY MODULE
PROBLEM TO BE SOLVED: To provide a radiowave absorber, excellent in radiowave absorption performance in a gigahertz band, showing no anisotropy in the radiowave absorption performance, and capable of absorbing radiowaves incident from various directions.SOLUTION: This invention relates to a radiowave absorber 1, comprising a sintered body of M-type hexagonal ferrite expressed by compositional formula: BaFe(TiCu)O(X is 2.5 to 3.5), wherein: an orientation degree of ferrite crystalline particles measured by Lotgering method is 0.2 or less, preferably, 0.04 to 0.15; and the sintered body has a thickness of 0.5 to 3 mm. This invention further relates to a method for producing the radiowave absorber 1, including: mixing barium carbonate powder, iron oxide powder, titanium oxide powder and copper oxide powder together, to make a mixture; using the mixture, a binder, and water to make a slurry; spray-drying the slurry to make a granulated substance having an average particle diameter of 0.05 to 8 μm; subjecting the granulated substance to compression molding, to obtain a molded body; and calcining the molded body to prepare the sintered body of M-type hexagonal ferrite.SELECTED DRAWING: Figure 1
【課題】ギガヘルツ帯での電波吸収性能に優れ、且つ電波吸収性能に異方性が無く、様々な方向から入射した電波を吸収可能な電波吸収体の提供。【解決手段】組成式:BaFe12−X(Ti0.5Cu0.5)XO19(Xは2.5〜3.5)のM型六方晶フェライトの焼結体からなり、且つLotgering法で評価したフェライト結晶粒子の配向度が0.2以下、好ましく、は0.04〜0.15である電波吸収体1。前記焼結体が0.5〜3mmの厚みを有する電波吸収体1。炭酸バリウム粉末と酸化鉄粉末と、酸化チタン粉末と酸化銅粉末とを混合して、混合物を作り、前記混合物と、結合剤と水とを含むスラリーとし、前記スラリーを噴霧乾燥して、0.05〜8μmの平均粒径を有する造粒物とし、前記増留物を加圧成形して、成形体とし、前記成形体を焼成して、M型六方晶フェライトの焼結体を調製する電波吸収体1の製造方法。【選択図】図1
RADIOWAVE ABSORBER, METHOD FOR PRODUCING THE SAME, AND HIGH FREQUENCY MODULE
PROBLEM TO BE SOLVED: To provide a radiowave absorber, excellent in radiowave absorption performance in a gigahertz band, showing no anisotropy in the radiowave absorption performance, and capable of absorbing radiowaves incident from various directions.SOLUTION: This invention relates to a radiowave absorber 1, comprising a sintered body of M-type hexagonal ferrite expressed by compositional formula: BaFe(TiCu)O(X is 2.5 to 3.5), wherein: an orientation degree of ferrite crystalline particles measured by Lotgering method is 0.2 or less, preferably, 0.04 to 0.15; and the sintered body has a thickness of 0.5 to 3 mm. This invention further relates to a method for producing the radiowave absorber 1, including: mixing barium carbonate powder, iron oxide powder, titanium oxide powder and copper oxide powder together, to make a mixture; using the mixture, a binder, and water to make a slurry; spray-drying the slurry to make a granulated substance having an average particle diameter of 0.05 to 8 μm; subjecting the granulated substance to compression molding, to obtain a molded body; and calcining the molded body to prepare the sintered body of M-type hexagonal ferrite.SELECTED DRAWING: Figure 1
【課題】ギガヘルツ帯での電波吸収性能に優れ、且つ電波吸収性能に異方性が無く、様々な方向から入射した電波を吸収可能な電波吸収体の提供。【解決手段】組成式:BaFe12−X(Ti0.5Cu0.5)XO19(Xは2.5〜3.5)のM型六方晶フェライトの焼結体からなり、且つLotgering法で評価したフェライト結晶粒子の配向度が0.2以下、好ましく、は0.04〜0.15である電波吸収体1。前記焼結体が0.5〜3mmの厚みを有する電波吸収体1。炭酸バリウム粉末と酸化鉄粉末と、酸化チタン粉末と酸化銅粉末とを混合して、混合物を作り、前記混合物と、結合剤と水とを含むスラリーとし、前記スラリーを噴霧乾燥して、0.05〜8μmの平均粒径を有する造粒物とし、前記増留物を加圧成形して、成形体とし、前記成形体を焼成して、M型六方晶フェライトの焼結体を調製する電波吸収体1の製造方法。【選択図】図1
RADIOWAVE ABSORBER, METHOD FOR PRODUCING THE SAME, AND HIGH FREQUENCY MODULE
電波吸収体、その製造方法及び高周波モジュール
MASAKI MOTOKI (Autor:in) / KATO TOMOAKI (Autor:in)
04.10.2018
Patent
Elektronische Ressource
Japanisch
Uncertainties in Calibration of Radiowave Testing Instruments
British Library Online Contents | 2000
|METHOD FOR PRODUCING A CERAMIC ABSORBER, CERAMIC ABSORBER, AND USE OF SAME
Europäisches Patentamt | 2021
|METHOD FOR PRODUCING A CERAMIC ABSORBER, CERAMIC ABSORBER, AND USE OF SAME
Europäisches Patentamt | 2020
|Developments in Radiowave Absorption Technique (RAT) in Geomapping
British Library Conference Proceedings | 1999
|A Nondestructive Radiowave Method of Measuring the Specific Resistance of Semiconductor Materials
British Library Online Contents | 1993
|