Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
FAR INFRARED ENERGY-SAVING RADIATION COATING FOR HIGH-TEMPERATURE FURNACE
To provide: a far infrared radiation base material having an excellent far infrared radiation performance in which emissivity in a wavelength range of 8-14 μm at 1,000°C is ≥0.960; a preparation method thereof; and a far infrared energy-saving radiation coating for a high-temperature furnace comprising the base material.SOLUTION: This invention provides a far infrared energy-saving radiation coating for a high-temperature furnace, comprising: a far infrared radiation base material comprising LaAl1-xRuxO3 nanoparticles; a controlling agent; and an adhesive. A preparation method of the far infrared radiation base material includes the following steps: preparing lanthanum nitrate, aluminum nitrate and ruthenium nitrate into aqueous solution, and mixing to prepare a solution A; dissolving glutamic acid and citric acid in water, and adding a catalyst to prepare a solution B; stirring and mixing the solution A and the solution B, then performing microwave radiation, firing and grinding to obtain a precursor; and firing, cooling and then grinding the precursor to obtain the nano particles.SELECTED DRAWING: Figure 1
【課題】1000℃で8‐14μmの波長帯での放射率≧0.960の良い遠赤外線放射性能を有する遠赤外線放射基材、その調製方法、及び該基材を含む高温炉用省エネルギー型遠赤外線放射塗料を提供する。【解決手段】LaAl1‐xRuxO3ナノ粒子を含有する遠赤外線放射基材と、調整剤と、接着剤とを含む高温炉用省エネルギー型遠赤外線放射塗料。前記遠赤外線放射基材の調製方法は以下の工程を含む:硝酸ランタン、硝酸アルミニウム、硝酸ルテニウムを水溶液に調製した後に混合してA液に調製し、グルタミン酸とクエン酸を水に溶解し、触媒を加えてB液に調製し、A液とB液を攪拌混合した後にマイクロ波放射した後、焼成してから研磨し、前駆体を得て、前駆体を焼成し、冷却後に研磨してナノ粒子を得る。【選択図】図1
FAR INFRARED ENERGY-SAVING RADIATION COATING FOR HIGH-TEMPERATURE FURNACE
To provide: a far infrared radiation base material having an excellent far infrared radiation performance in which emissivity in a wavelength range of 8-14 μm at 1,000°C is ≥0.960; a preparation method thereof; and a far infrared energy-saving radiation coating for a high-temperature furnace comprising the base material.SOLUTION: This invention provides a far infrared energy-saving radiation coating for a high-temperature furnace, comprising: a far infrared radiation base material comprising LaAl1-xRuxO3 nanoparticles; a controlling agent; and an adhesive. A preparation method of the far infrared radiation base material includes the following steps: preparing lanthanum nitrate, aluminum nitrate and ruthenium nitrate into aqueous solution, and mixing to prepare a solution A; dissolving glutamic acid and citric acid in water, and adding a catalyst to prepare a solution B; stirring and mixing the solution A and the solution B, then performing microwave radiation, firing and grinding to obtain a precursor; and firing, cooling and then grinding the precursor to obtain the nano particles.SELECTED DRAWING: Figure 1
【課題】1000℃で8‐14μmの波長帯での放射率≧0.960の良い遠赤外線放射性能を有する遠赤外線放射基材、その調製方法、及び該基材を含む高温炉用省エネルギー型遠赤外線放射塗料を提供する。【解決手段】LaAl1‐xRuxO3ナノ粒子を含有する遠赤外線放射基材と、調整剤と、接着剤とを含む高温炉用省エネルギー型遠赤外線放射塗料。前記遠赤外線放射基材の調製方法は以下の工程を含む:硝酸ランタン、硝酸アルミニウム、硝酸ルテニウムを水溶液に調製した後に混合してA液に調製し、グルタミン酸とクエン酸を水に溶解し、触媒を加えてB液に調製し、A液とB液を攪拌混合した後にマイクロ波放射した後、焼成してから研磨し、前駆体を得て、前駆体を焼成し、冷却後に研磨してナノ粒子を得る。【選択図】図1
FAR INFRARED ENERGY-SAVING RADIATION COATING FOR HIGH-TEMPERATURE FURNACE
高温炉用省エネルギー型遠赤外線放射塗料
YU WENQI (Autor:in) / PING YUFENG (Autor:in) / ZHANG FENG (Autor:in)
24.06.2021
Patent
Elektronische Ressource
Japanisch
IPC:
C04B
Kalk
,
LIME
/
B01J
Chemische oder physikalische Verfahren, z.B. Katalyse oder Kolloidchemie
,
CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY
/
C09D
Überzugsmittel, z.B. Anstrichstoffe, Firnisse oder Lacke
,
COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS
/
C23C
Beschichten metallischer Werkstoffe
,
COATING METALLIC MATERIAL
Europäisches Patentamt | 2024
|Europäisches Patentamt | 2024
|High-radiation wear-resistant energy-saving coating and preparation method thereof
Europäisches Patentamt | 2015
|High-radiation metal anti-corrosion energy-saving coating and preparation method thereof
Europäisches Patentamt | 2020
|