Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Ceramic interconnect for fuel cell stacks
A fuel cell comprises a plurality of sub-cells, each sub-cell including a first electrode in fluid communication with a source of oxygen gas, a second electrode in fluid communication with a source of a fuel gas, and a solid electrolyte between the first electrode and the second electrode. The sub-cells are connected with each other with an interconnect. The interconnect includes a first layer in contact with the first electrode of each cell, and a second layer in contact with the second electrode of each cell. The first layer includes a (La,Mn)Sr-titanate based perovskite represented by the empirical formula of LaySr(1-y)Ti(1-x)MnxOb. In one embodiment, the second layer includes a (Nb,Y)Sr-titanate perovskite represented by the empirical formula of Sr(1-1.5z-0.5k±δ)YzNbkTi(1-k)Od. In another embodiment, the interconnect has a thickness of between about 10 μm and about 100 μm, and the second layer of the interconnect includes a (La)Sr-titanate based perovskite represented by the empirical formula of Sr(1-z±δ)LazTiOd.
Ceramic interconnect for fuel cell stacks
A fuel cell comprises a plurality of sub-cells, each sub-cell including a first electrode in fluid communication with a source of oxygen gas, a second electrode in fluid communication with a source of a fuel gas, and a solid electrolyte between the first electrode and the second electrode. The sub-cells are connected with each other with an interconnect. The interconnect includes a first layer in contact with the first electrode of each cell, and a second layer in contact with the second electrode of each cell. The first layer includes a (La,Mn)Sr-titanate based perovskite represented by the empirical formula of LaySr(1-y)Ti(1-x)MnxOb. In one embodiment, the second layer includes a (Nb,Y)Sr-titanate perovskite represented by the empirical formula of Sr(1-1.5z-0.5k±δ)YzNbkTi(1-k)Od. In another embodiment, the interconnect has a thickness of between about 10 μm and about 100 μm, and the second layer of the interconnect includes a (La)Sr-titanate based perovskite represented by the empirical formula of Sr(1-z±δ)LazTiOd.
Ceramic interconnect for fuel cell stacks
LIN GUANGYONG (Autor:in)
26.06.2018
Patent
Elektronische Ressource
Englisch
An All-Ceramic Interconnect for Use in Solid-Oxide Fuel Cell Stacks
British Library Online Contents | 2005
|Europäisches Patentamt | 2019
|Guest Editorial Ceramic Interconnect Technology
British Library Online Contents | 2004
|Guest Editorial: Ceramic Interconnect Technology
British Library Online Contents | 2003
|Issues Related to the Modeling of Solid Oxide Fuel Cell Stacks
British Library Online Contents | 2006
|