Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Fusion based learning approach for predicting concrete pouring productivity based on construction and supply parameters
Purpose - The purpose of this paper is to predict the concrete pouring production rate by considering both construction and supply parameters, and by using a more stable learning method. Design/methodology/approach - Unlike similar approaches, this paper considers not only construction site parameters, but also supply chain parameters. Machine learner fusion-regression (MLF-R) is used to predict the production rate of concrete pouring tasks. Findings - MLF-R is used on a field database including 2,600 deliveries to 507 different locations. The proposed data set and the results are compared with ANN-Gaussian, ANN-Sigmoid and Adaboost.R2 (ANN-Gaussian). The results show better performance of MLF-R obtaining the least root mean square error (RMSE) compared with other methods. Moreover, the RMSEs derived from the predictions by MLF-R in some trials had the least standard deviation, indicating the stability of this approach among similar used approaches. Practical implications - The size of the database used in this study is much larger than the size of databases used in previous studies. It helps authors draw their conclusions more confidently and introduce more generalised models that can be used in the ready-mixed concrete industry. Originality/value - Introducing a more stable learning method for predicting the concrete pouring production rate helps not only construction parameters, but also traffic and supply chain parameters.
Fusion based learning approach for predicting concrete pouring productivity based on construction and supply parameters
Purpose - The purpose of this paper is to predict the concrete pouring production rate by considering both construction and supply parameters, and by using a more stable learning method. Design/methodology/approach - Unlike similar approaches, this paper considers not only construction site parameters, but also supply chain parameters. Machine learner fusion-regression (MLF-R) is used to predict the production rate of concrete pouring tasks. Findings - MLF-R is used on a field database including 2,600 deliveries to 507 different locations. The proposed data set and the results are compared with ANN-Gaussian, ANN-Sigmoid and Adaboost.R2 (ANN-Gaussian). The results show better performance of MLF-R obtaining the least root mean square error (RMSE) compared with other methods. Moreover, the RMSEs derived from the predictions by MLF-R in some trials had the least standard deviation, indicating the stability of this approach among similar used approaches. Practical implications - The size of the database used in this study is much larger than the size of databases used in previous studies. It helps authors draw their conclusions more confidently and introduce more generalised models that can be used in the ready-mixed concrete industry. Originality/value - Introducing a more stable learning method for predicting the concrete pouring production rate helps not only construction parameters, but also traffic and supply chain parameters.
Fusion based learning approach for predicting concrete pouring productivity based on construction and supply parameters
Mojtaba Maghrebi (Autor:in) / Ali Shamsoddini / S Travis Waller
2016
Aufsatz (Zeitschrift)
Englisch
Optimization , Datasets , Productivity , Experts , Studies , Heuristic , Problems , Research , Methods , Concrete construction , Algorithms
Emerald Group Publishing | 2016
|PREDICTING CONSTRUCTION CREW PRODUCTIVITY FOR CONCRETE POURING OPERATIONS OF RC COLUMNS USING ANN
TIBKAT | 2023
|Hazard-based model for concrete pouring duration using construction site and supply chain parameters
British Library Online Contents | 2016
|Hazard-based model for concrete pouring duration using construction site and supply chain parameters
Online Contents | 2016
|