Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Pile reinforcement mechanism of soil slopes
Abstract Stabilizing piles are widely used as an effective and economic reinforcement approach for slopes. Reasonable designs of pile reinforcement depend on the understanding of reinforcement mechanism of slopes. A series of centrifuge model tests were conducted on the pile-reinforced slopes and corresponding unreinforced slopes under self-weight and vertical loading conditions. The deformation of the slope was measured using image-based analysis and employed to investigate the pile reinforcement mechanism. The test results showed that the piles significantly reduced the deformation and changed the deformation distribution of the slope, and prevented the failure occurred in the unreinforced slope. The pile influence zone was determined according to the inflection points on the distribution curves of horizontal displacement, which comprehensively described the features of the pile–slope interaction and the characteristics of reinforced slopes. The concepts of anti-shear effect and compression effect were proposed to quantitatively describe the restriction features of the piles on the deformation of the slope, namely the reduction in the shear deformation and the increase in the compression deformation, respectively. The pile reinforcement effect mainly occurred in the pile influence zone and decreased with increasing distance from the piles. There was a dominated compression effect in the vicinities of the piles. The compression effect developed upwards in the slope with a transmission to the anti-shear effect. The anti-shear effect became significantly dominated near the slip surface and prevented the failure that occurred in the unreinforced slope.
Pile reinforcement mechanism of soil slopes
Abstract Stabilizing piles are widely used as an effective and economic reinforcement approach for slopes. Reasonable designs of pile reinforcement depend on the understanding of reinforcement mechanism of slopes. A series of centrifuge model tests were conducted on the pile-reinforced slopes and corresponding unreinforced slopes under self-weight and vertical loading conditions. The deformation of the slope was measured using image-based analysis and employed to investigate the pile reinforcement mechanism. The test results showed that the piles significantly reduced the deformation and changed the deformation distribution of the slope, and prevented the failure occurred in the unreinforced slope. The pile influence zone was determined according to the inflection points on the distribution curves of horizontal displacement, which comprehensively described the features of the pile–slope interaction and the characteristics of reinforced slopes. The concepts of anti-shear effect and compression effect were proposed to quantitatively describe the restriction features of the piles on the deformation of the slope, namely the reduction in the shear deformation and the increase in the compression deformation, respectively. The pile reinforcement effect mainly occurred in the pile influence zone and decreased with increasing distance from the piles. There was a dominated compression effect in the vicinities of the piles. The compression effect developed upwards in the slope with a transmission to the anti-shear effect. The anti-shear effect became significantly dominated near the slip surface and prevented the failure that occurred in the unreinforced slope.
Pile reinforcement mechanism of soil slopes
Zhang, Ga (Autor:in) / Wang, Liping (Autor:in) / Wang, Yaliang (Autor:in)
Acta Geotechnica ; 12
2017
Aufsatz (Zeitschrift)
Englisch
BKL:
56.20
Ingenieurgeologie, Bodenmechanik
/
56.20$jIngenieurgeologie$jBodenmechanik
DDC:
624.15105
Pile reinforcement mechanism of soil slopes
British Library Online Contents | 2017
|Pile reinforcement mechanism of soil slopes
Springer Verlag | 2017
|Pile reinforcement mechanism of soil slopes
Springer Verlag | 2017
|Mechanics of pile reinforcement for unstable slopes
TIBKAT | 1991
|Mechanics of Pile Reinforcement for Unstable Slopes
NTIS | 1991
|