Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Biosurfaces : a materials science and engineering perspective
"Ideal as a graduate textbook, this book is aimed at helping design effective biomaterials, taking into account the complex interactions that occur at the interface when a synthetic material is inserted into a living system. Surface reactivity, biochemistry, substrates, cleaning, preparation, and coatings are presented, with numerous case studies and applications throughout. Highlights include: Starts with concepts and works up to real-life applciations such as implantable devices, medical devices, prosthetics, and drug delivery technology Addresses surface reactivity, requirements for surface coating, cleaning and preparation techniques, and characterization Discusses the biological response to coatings Addresses biomaterial-tissue interaction Incorporates nanomechanical properties and processing strategies"--
"This book is aimed at helping design effective biomaterials, taking into account the complex interactions that occur at the interface when a synthetic material is inserted into a living system. Surface reactivity, biochemistry, substrates, cleaning, preparation, and coatings are presented, with numerous case studies and applications throughout"--
2.5 Extracellular Matrix2.6 Biomineralization; 2.6.1 Inorganic Structure of Life; 2.6.2 The Major Groups of Biominerals; 2.6.3 Types of Biomineralization; 2.6.4 Biomineral Types and Functions; Questions; References; Chapter 3 HOST RESPONSE OF IMPLANTED BIOMATERIALS; 3.1 Immune Response to Implanted Biomaterials; 3.1.1 Introduction; 3.1.2 Activation of the Immune System; 3.1.3 Cells of the Immune System; 3.1.4 Antibodies; 3.1.5 Antigens; 3.1.6 Antigen Processing and Presentation; 3.2 Transplant Immunology; 3.3 Biocompatibility; 3.3.1 Definition; 3.3.2 In vitro and in vivo Tests; Exercises.
5.4 Turtle Shell5.5 Wood; 5.6 Silk; 5.7 Nacre; 5.8 Gecko-Feet; 5.8.1 Synthesis of Gecko-Foot-Like Adhesives; 5.9 Lotus Leaf; 5.9.1 Mimicking Lotus Leaf Structure; Questions; References; Chapter 6 SUPERHYDROPHOBIC SURFACES; 6.1 Introduction; 6.2 Surfaces and Superhydrophobicity in Nature; 6.3 Classification of Surfaces; 6.3.1 Learning from Nature; 6.3.2 Role of Chemical Composition and Two-Level Roughness; 6.3.3 Mechanical Aspects of Surfaces; 6.4 Mechanics and Nature of Wetting; 6.5 Fabrication of Artificial Superhydrophobic Surfaces; 6.5.1 Soft Lithographic Imprinting; 6.5.2 Plasma Treatment.
6.5.3 Sol-Gel Technique6.5.4 Combination Based on Chemical Vapor Deposition; 6.5.5 Electrospinning; 6.6 Preparation of Metallic Superhydrophobic Surfaces; 6.7 Controlled Wettability Surfaces (CWS); 6.8 Conclusions; Questions; References; Chapter 7 SURFACE ENGINEERING AND MODIFICATION FOR BIOMEDICAL APPLICATIONS; 7.1 Corrosion of Biomaterials and Need for Surface Coating for Biomedical Applications; 7.2 Surface Reactivity and Body Cell Response; 7.3 Key Requirements of Surface Coating; 7.3.1 Surface Roughness; 7.3.2 Porosity; 7.3.3 Cell Adhesion and Growth; 7.3.4 Contamination/Leaching.
Cover; Contents; Foreword; Preface; Contributors; Chapter 1 INTRODUCTION TO BIOMATERIALS; 1.1 Introduction; 1.2 Classification of Biomaterials; 1.2.1 Polymers; 1.2.2 Silicone Biomaterials; 1.2.3 Metals; 1.2.4 Ceramics; 1.2.5 Mechanical Properties of Ceramics; 1.3 Summary; Questions; References; Chapter 2 TISSUE INTERACTION WITH BIOMATERIALS; 2.1 Introduction; 2.2 Protein Adsorption and Cell Adhesion; 2.2.1 Cell Adhesion; 2.3 Cell Migration; 2.4 Controlled Cell Deposition; 2.4.1 Hydrophobicity; 2.4.2 Material Chemistry and Surface Charge; 2.4.3 Surface Topography and Roughness.
Biosurfaces : a materials science and engineering perspective
"Ideal as a graduate textbook, this book is aimed at helping design effective biomaterials, taking into account the complex interactions that occur at the interface when a synthetic material is inserted into a living system. Surface reactivity, biochemistry, substrates, cleaning, preparation, and coatings are presented, with numerous case studies and applications throughout. Highlights include: Starts with concepts and works up to real-life applciations such as implantable devices, medical devices, prosthetics, and drug delivery technology Addresses surface reactivity, requirements for surface coating, cleaning and preparation techniques, and characterization Discusses the biological response to coatings Addresses biomaterial-tissue interaction Incorporates nanomechanical properties and processing strategies"--
"This book is aimed at helping design effective biomaterials, taking into account the complex interactions that occur at the interface when a synthetic material is inserted into a living system. Surface reactivity, biochemistry, substrates, cleaning, preparation, and coatings are presented, with numerous case studies and applications throughout"--
2.5 Extracellular Matrix2.6 Biomineralization; 2.6.1 Inorganic Structure of Life; 2.6.2 The Major Groups of Biominerals; 2.6.3 Types of Biomineralization; 2.6.4 Biomineral Types and Functions; Questions; References; Chapter 3 HOST RESPONSE OF IMPLANTED BIOMATERIALS; 3.1 Immune Response to Implanted Biomaterials; 3.1.1 Introduction; 3.1.2 Activation of the Immune System; 3.1.3 Cells of the Immune System; 3.1.4 Antibodies; 3.1.5 Antigens; 3.1.6 Antigen Processing and Presentation; 3.2 Transplant Immunology; 3.3 Biocompatibility; 3.3.1 Definition; 3.3.2 In vitro and in vivo Tests; Exercises.
5.4 Turtle Shell5.5 Wood; 5.6 Silk; 5.7 Nacre; 5.8 Gecko-Feet; 5.8.1 Synthesis of Gecko-Foot-Like Adhesives; 5.9 Lotus Leaf; 5.9.1 Mimicking Lotus Leaf Structure; Questions; References; Chapter 6 SUPERHYDROPHOBIC SURFACES; 6.1 Introduction; 6.2 Surfaces and Superhydrophobicity in Nature; 6.3 Classification of Surfaces; 6.3.1 Learning from Nature; 6.3.2 Role of Chemical Composition and Two-Level Roughness; 6.3.3 Mechanical Aspects of Surfaces; 6.4 Mechanics and Nature of Wetting; 6.5 Fabrication of Artificial Superhydrophobic Surfaces; 6.5.1 Soft Lithographic Imprinting; 6.5.2 Plasma Treatment.
6.5.3 Sol-Gel Technique6.5.4 Combination Based on Chemical Vapor Deposition; 6.5.5 Electrospinning; 6.6 Preparation of Metallic Superhydrophobic Surfaces; 6.7 Controlled Wettability Surfaces (CWS); 6.8 Conclusions; Questions; References; Chapter 7 SURFACE ENGINEERING AND MODIFICATION FOR BIOMEDICAL APPLICATIONS; 7.1 Corrosion of Biomaterials and Need for Surface Coating for Biomedical Applications; 7.2 Surface Reactivity and Body Cell Response; 7.3 Key Requirements of Surface Coating; 7.3.1 Surface Roughness; 7.3.2 Porosity; 7.3.3 Cell Adhesion and Growth; 7.3.4 Contamination/Leaching.
Cover; Contents; Foreword; Preface; Contributors; Chapter 1 INTRODUCTION TO BIOMATERIALS; 1.1 Introduction; 1.2 Classification of Biomaterials; 1.2.1 Polymers; 1.2.2 Silicone Biomaterials; 1.2.3 Metals; 1.2.4 Ceramics; 1.2.5 Mechanical Properties of Ceramics; 1.3 Summary; Questions; References; Chapter 2 TISSUE INTERACTION WITH BIOMATERIALS; 2.1 Introduction; 2.2 Protein Adsorption and Cell Adhesion; 2.2.1 Cell Adhesion; 2.3 Cell Migration; 2.4 Controlled Cell Deposition; 2.4.1 Hydrophobicity; 2.4.2 Material Chemistry and Surface Charge; 2.4.3 Surface Topography and Roughness.
Biosurfaces : a materials science and engineering perspective
Balani, Kantesh (Autor:in)
2014
1 Online-Ressource (1 online resource)
Includes index
Buch
Elektronische Ressource
Englisch
DDC:
620/.44
Biosurfaces : a materials science and engineering perspective
UB Braunschweig | 2014
|Signal Amplifications of Biological Events on Biosurfaces with Am-Tag
British Library Conference Proceedings | 2008
|British Library Online Contents | 2003
|A perspective of materials science and engineering education in China
British Library Online Contents | 1995
|Materials science and engineering
TIBKAT | 2024
|