Eine Plattform für die Wissenschaft: Bauingenieurwesen, Architektur und Urbanistik
Interface Engineered Room‐Temperature Ferromagnetic Insulating State in Ultrathin Manganite Films
Ultrathin epitaxial films of ferromagnetic insulators (FMIs) with Curie temperatures near room temperature are critically needed for use in dissipationless quantum computation and spintronic devices. However, such materials are extremely rare. Here, a room‐temperature FMI is achieved in ultrathin La0.9Ba0.1MnO3 films grown on SrTiO3 substrates via an interface proximity effect. Detailed scanning transmission electron microscopy images clearly demonstrate that MnO6 octahedral rotations in La0.9Ba0.1MnO3 close to the interface are strongly suppressed. As determined from in situ X‐ray photoemission spectroscopy, O K‐edge X‐ray absorption spectroscopy, and density functional theory, the realization of the FMI state arises from a reduction of Mn eg bandwidth caused by the quenched MnO6 octahedral rotations. The emerging FMI state in La0.9Ba0.1MnO3 together with necessary coherent interface achieved with the perovskite substrate gives very high potential for future high performance electronic devices.
Interface Engineered Room‐Temperature Ferromagnetic Insulating State in Ultrathin Manganite Films
Ultrathin epitaxial films of ferromagnetic insulators (FMIs) with Curie temperatures near room temperature are critically needed for use in dissipationless quantum computation and spintronic devices. However, such materials are extremely rare. Here, a room‐temperature FMI is achieved in ultrathin La0.9Ba0.1MnO3 films grown on SrTiO3 substrates via an interface proximity effect. Detailed scanning transmission electron microscopy images clearly demonstrate that MnO6 octahedral rotations in La0.9Ba0.1MnO3 close to the interface are strongly suppressed. As determined from in situ X‐ray photoemission spectroscopy, O K‐edge X‐ray absorption spectroscopy, and density functional theory, the realization of the FMI state arises from a reduction of Mn eg bandwidth caused by the quenched MnO6 octahedral rotations. The emerging FMI state in La0.9Ba0.1MnO3 together with necessary coherent interface achieved with the perovskite substrate gives very high potential for future high performance electronic devices.
Interface Engineered Room‐Temperature Ferromagnetic Insulating State in Ultrathin Manganite Films
Li, Weiwei (Autor:in) / Zhu, Bonan (Autor:in) / He, Qian (Autor:in) / Borisevich, Albina Y. (Autor:in) / Yun, Chao (Autor:in) / Wu, Rui (Autor:in) / Lu, Ping (Autor:in) / Qi, Zhimin (Autor:in) / Wang, Qiang (Autor:in) / Chen, Aiping (Autor:in)
Advanced Science ; 7
01.01.2020
8 pages
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
Insulating Ultrathin Silica Films Formed by a Room-Temperature Sol-Gel Process
British Library Online Contents | 2001
|Room-temperature oxidation of ultrathin TiB~2 films
British Library Online Contents | 2002
|Spin State Disproportionation in Insulating Ferromagnetic LaCoO3 Epitaxial Thin Films
Wiley | 2023
|Giant Room-Temperature Elastocaloric Effect in Ferroelectric Ultrathin Films
British Library Online Contents | 2014
|Ferromagnetic Si at room temperature
British Library Online Contents | 2005
|