A platform for research: civil engineering, architecture and urbanism
Algorithm for the calculation of the translator position in permanent magnet linear generators
A permanent magnet linear generator for direct drive wave energy converters is a suitable power take-off system for ocean wave energy extraction, especially when coupled with a point absorbing buoy via a connection line. The performance of the linear generator is affected by the excursion of the translator along the stator. The optimal stroke is achieved when the midpoint of the oscillations coincides with the center of the stator. However, sea level changes due to, e.g., tides will shift these oscillations. This paper proposes a model able to detect the position of the translator from the generator output voltage. The algorithm will be integrated in the control system of a mechanical device that adjusts the length of the connection line in order to center the average position of the translator with the center of the stator. Thereby, the output power from the wave energy converter increases, and the mechanical stresses on the hull of the generator decrease. The results obtained by the model show good agreement with the experimental results from two linear generators, L2 and L3, deployed in the Lysekil wave energy research site, Sweden. The theoretical results differ from the experimental results by −4 mm for L2 and 21 mm for L3 with a standard deviation of 27 mm and 31 mm, respectively.
Algorithm for the calculation of the translator position in permanent magnet linear generators
A permanent magnet linear generator for direct drive wave energy converters is a suitable power take-off system for ocean wave energy extraction, especially when coupled with a point absorbing buoy via a connection line. The performance of the linear generator is affected by the excursion of the translator along the stator. The optimal stroke is achieved when the midpoint of the oscillations coincides with the center of the stator. However, sea level changes due to, e.g., tides will shift these oscillations. This paper proposes a model able to detect the position of the translator from the generator output voltage. The algorithm will be integrated in the control system of a mechanical device that adjusts the length of the connection line in order to center the average position of the translator with the center of the stator. Thereby, the output power from the wave energy converter increases, and the mechanical stresses on the hull of the generator decrease. The results obtained by the model show good agreement with the experimental results from two linear generators, L2 and L3, deployed in the Lysekil wave energy research site, Sweden. The theoretical results differ from the experimental results by −4 mm for L2 and 21 mm for L3 with a standard deviation of 27 mm and 31 mm, respectively.
Algorithm for the calculation of the translator position in permanent magnet linear generators
Castellucci, Valeria (author) / Abrahamsson, Johan (author) / Svensson, Olle (author) / Waters, Rafael (author)
2014-11-01
9 pages
Article (Journal)
Electronic Resource
English
Inertia response from full-power converter-based permanent magnet wind generators
DOAJ | 2013
|Permanent magnet track and permanent magnet suspension system
European Patent Office | 2022
|