A platform for research: civil engineering, architecture and urbanism
Pitt River Bridge 2007 Static Pile Loading Test
To validate the foundation design for the main piers for Pitt River Bridge Design-Build (DB) project, a conventional, head-down, static pile loading test was carried out using production piles for both the test and reaction piles to minimize costs. The piles comprised of an 1824 mm diameter, open-toe, steel pipe driven into very dense Pleistocene deposits (glacial till or drift and inter-glacial sediments) at approximately 100 m depth. The loading test was completed successfully in December 2007 to a load of 45 MN by the design-build contractor, Peter Kiewit Sons. Design of the piles was based on information provided by the owner to the DB proponents and included results of test holes and static pile loading tests conducted in the 1970s on 36 and 55 m long, open toe steel pipe piles, CPT and SCPT profiling conducted in the 1990s and mid-2000s, and dynamic load tests (DLTs) conducted on an 100 m long, 1067 mm diameter, open toe indicator pile installed in 2005. Test pile installation records and Pile Driving Analysis (PDA) records and signal matching analyses for the 2005 test pile were used to calibrate the design and confirm pile installation requirements. Supplementary test holes, and CPTs and SCPTs were conducted to over 100 m depth to calibrate pile resistance, particularly pile toe resistance. DLTs were also conducted on several of the production piles to validate the design. This paper presents key aspects of each of the points mentioned above.
Pitt River Bridge 2007 Static Pile Loading Test
To validate the foundation design for the main piers for Pitt River Bridge Design-Build (DB) project, a conventional, head-down, static pile loading test was carried out using production piles for both the test and reaction piles to minimize costs. The piles comprised of an 1824 mm diameter, open-toe, steel pipe driven into very dense Pleistocene deposits (glacial till or drift and inter-glacial sediments) at approximately 100 m depth. The loading test was completed successfully in December 2007 to a load of 45 MN by the design-build contractor, Peter Kiewit Sons. Design of the piles was based on information provided by the owner to the DB proponents and included results of test holes and static pile loading tests conducted in the 1970s on 36 and 55 m long, open toe steel pipe piles, CPT and SCPT profiling conducted in the 1990s and mid-2000s, and dynamic load tests (DLTs) conducted on an 100 m long, 1067 mm diameter, open toe indicator pile installed in 2005. Test pile installation records and Pile Driving Analysis (PDA) records and signal matching analyses for the 2005 test pile were used to calibrate the design and confirm pile installation requirements. Supplementary test holes, and CPTs and SCPTs were conducted to over 100 m depth to calibrate pile resistance, particularly pile toe resistance. DLTs were also conducted on several of the production piles to validate the design. This paper presents key aspects of each of the points mentioned above.
Pitt River Bridge 2007 Static Pile Loading Test
Tara, David J. (author)
GeoCongress 2012 ; 2012 ; Oakland, California, United States
Full-Scale Testing and Foundation Design ; 289-306
2012-03-29
Conference paper
Electronic Resource
English
Piles , Canada , Span bridges , Design , Engineers , Load tests , Foundations , Full-scale tests
Foundations for Pitt river bridge
Engineering Index Backfile | 1913
Foundation work on the Pitt river bridge
Engineering Index Backfile | 1913
Analysis of Static Loading Test of the Dongying Yellow River Bridge
British Library Conference Proceedings | 2007
|Intelligent pile foundation static load test pile loading system and method
European Patent Office | 2024
|