A platform for research: civil engineering, architecture and urbanism
High resolution ion chamber array delivery quality assurance for robotic radiosurgery : commissioning and validation
Purpose: High precision radiosurgery demands comprehensive delivery-quality-assurance techniques. The use of a liquid-filled ion-chamber-array for robotic-radiosurgery delivery-quality-assurance was investigated and validated using several test scenarios and routine patient plans. Methods and material: Preliminary evaluation consisted of beam profile validation and analysis of source–detector-distance and beam-incidence-angle response dependence. The delivery-quality-assurance analysis is performed in four steps: (1) Array-to-plan registration, (2) Evaluation with standard Gamma-Index criteria (local-dose-difference ⩽ 2%, distance-to-agreement ⩽ 2 mm, pass-rate ⩾ 90%), (3) Dose profile alignment and dose distribution shift until maximum pass-rate is found, and (4) Final evaluation with 1 mm distance-to-agreement criterion. Test scenarios consisted of intended phantom misalignments, dose miscalibrations, and undelivered Monitor Units. Preliminary method validation was performed on 55 clinical plans in five institutions. Results: The 1000SRS profile measurements showed sufficient agreement compared with a microDiamond detector for all collimator sizes. The relative response changes can be up to 2.2% per 10 cm source–detector-distance change, but remains within 1% for the clinically relevant source–detector-distance range. Planned and measured dose under different beam-incidence-angles showed deviations below 1% for angles between 0° and 80°. Small-intended errors were detected by 1 mm distance-to-agreement criterion while 2 mm criteria failed to reveal some of these deviations. All analyzed delivery-quality-assurance clinical patient plans were within our tight tolerance criteria. Conclusion: We demonstrated that a high-resolution liquid-filled ion-chamber-array can be suitable for robotic radiosurgery delivery-quality-assurance and that small errors can be detected with tight distance-to-agreement criterion. Further improvement may come from beam specific correction for incidence angle and source–detector-distance response.
High resolution ion chamber array delivery quality assurance for robotic radiosurgery : commissioning and validation
Purpose: High precision radiosurgery demands comprehensive delivery-quality-assurance techniques. The use of a liquid-filled ion-chamber-array for robotic-radiosurgery delivery-quality-assurance was investigated and validated using several test scenarios and routine patient plans. Methods and material: Preliminary evaluation consisted of beam profile validation and analysis of source–detector-distance and beam-incidence-angle response dependence. The delivery-quality-assurance analysis is performed in four steps: (1) Array-to-plan registration, (2) Evaluation with standard Gamma-Index criteria (local-dose-difference ⩽ 2%, distance-to-agreement ⩽ 2 mm, pass-rate ⩾ 90%), (3) Dose profile alignment and dose distribution shift until maximum pass-rate is found, and (4) Final evaluation with 1 mm distance-to-agreement criterion. Test scenarios consisted of intended phantom misalignments, dose miscalibrations, and undelivered Monitor Units. Preliminary method validation was performed on 55 clinical plans in five institutions. Results: The 1000SRS profile measurements showed sufficient agreement compared with a microDiamond detector for all collimator sizes. The relative response changes can be up to 2.2% per 10 cm source–detector-distance change, but remains within 1% for the clinically relevant source–detector-distance range. Planned and measured dose under different beam-incidence-angles showed deviations below 1% for angles between 0° and 80°. Small-intended errors were detected by 1 mm distance-to-agreement criterion while 2 mm criteria failed to reveal some of these deviations. All analyzed delivery-quality-assurance clinical patient plans were within our tight tolerance criteria. Conclusion: We demonstrated that a high-resolution liquid-filled ion-chamber-array can be suitable for robotic radiosurgery delivery-quality-assurance and that small errors can be detected with tight distance-to-agreement criterion. Further improvement may come from beam specific correction for incidence angle and source–detector-distance response.
High resolution ion chamber array delivery quality assurance for robotic radiosurgery : commissioning and validation
Blanck, Oliver (author) / Masi, Laura (author) / Chan, Mark K. H. (author) / Adamczyk, Sebastian (author) / Albrecht, Christian (author) / Damme, Marie-Christin (author) / Loutfi-Krauss, Britta (author) / Alraun, Manfred (author) / Fehr, Roman (author) / Ramm, Ulla (author)
2017-04-27
Article (Journal)
Electronic Resource
English
The Building Commissioning/Quality Assurance Process in North America
British Library Online Contents | 1994
|Pharmaceutical Quality Assurance Validation
Online Contents | 1996
VMAT linear accelerator commissioning and quality assurance: dose control and gantry speed tests
BASE | 2016
|Quality Assurance/Quality Control Review of Laboratory Data or Data Validation
British Library Conference Proceedings | 1994
|