A platform for research: civil engineering, architecture and urbanism
High quality clinical stereotactic radiosurgery planning and delivery with standard resolution (5mm) multileaf collimation and multiple isocentres
Purpose: Our purpose was to demonstrate the use of novel planning techniques in producing high-quality stereotactic radiosurgery (SRS) plans using a standard 5 mm multileaf collimator (MLC) and multiple isocenters delivered clinically at a local institution. Methods and Materials: Novel planning techniques consisted of offset isocenter, variable asymmetrical jaws, and Digital Imagine and Communications in Medicine (DICOM) edits to reduce leaf tip transmission, all with the aim of maximizing dose conformity. A local institution clinical cohort was planned (1-4 targets), and plan conformity metrics common to SRS were compared against conformity metrics from selected previous publications comparing Gamma Knife to linear accelerator SRS using high-definition MLC (2.5 mm). Additionally, local institution plan conformity metrics for 2 benchmark SRS planning cases (3 and 7 targets) were compared with metrics from other centers treating SRS clinically in England. Pretreatment quality assurance results, both point dose measurement and film analysis, are presented to demonstrate plan deliverability. Results: Clinical conformity metrics are shown to be comparable to previously published results using either Gamma Knife or linear accelerator with high-definition MLC. Metrics from benchmark planning cases are shown to be comparable and to have better prescription dose conformity than average nationally in England. Pretreatment quality assurance results demonstrate suitable plan deliverability. Conclusions: SRS planning using standard 5 mm MLC and multiple isocenters produces high-quality treatment plans for a limited number of targets with a high degree of dose conformity and dose fall off when employing novel planning techniques to compensate for MLC leaf size and multiple isocenters.
High quality clinical stereotactic radiosurgery planning and delivery with standard resolution (5mm) multileaf collimation and multiple isocentres
Purpose: Our purpose was to demonstrate the use of novel planning techniques in producing high-quality stereotactic radiosurgery (SRS) plans using a standard 5 mm multileaf collimator (MLC) and multiple isocenters delivered clinically at a local institution. Methods and Materials: Novel planning techniques consisted of offset isocenter, variable asymmetrical jaws, and Digital Imagine and Communications in Medicine (DICOM) edits to reduce leaf tip transmission, all with the aim of maximizing dose conformity. A local institution clinical cohort was planned (1-4 targets), and plan conformity metrics common to SRS were compared against conformity metrics from selected previous publications comparing Gamma Knife to linear accelerator SRS using high-definition MLC (2.5 mm). Additionally, local institution plan conformity metrics for 2 benchmark SRS planning cases (3 and 7 targets) were compared with metrics from other centers treating SRS clinically in England. Pretreatment quality assurance results, both point dose measurement and film analysis, are presented to demonstrate plan deliverability. Results: Clinical conformity metrics are shown to be comparable to previously published results using either Gamma Knife or linear accelerator with high-definition MLC. Metrics from benchmark planning cases are shown to be comparable and to have better prescription dose conformity than average nationally in England. Pretreatment quality assurance results demonstrate suitable plan deliverability. Conclusions: SRS planning using standard 5 mm MLC and multiple isocenters produces high-quality treatment plans for a limited number of targets with a high degree of dose conformity and dose fall off when employing novel planning techniques to compensate for MLC leaf size and multiple isocenters.
High quality clinical stereotactic radiosurgery planning and delivery with standard resolution (5mm) multileaf collimation and multiple isocentres
Robinson, M (author) / Tunstall, C (author) / Van Den Heuvel, F (author) / Hobbs, C (author) / Padmanaban, S (author)
2020-03-12
Article (Journal)
Electronic Resource
English
DDC:
710
UB Braunschweig | 2019
|Stereotactic Radiosurgery Head Phantom Bite Tray Fit Reproducibility
British Library Online Contents | 2014
|Analysis of aerodynamic multileaf foil journal bearings
British Library Online Contents | 1997
|