A platform for research: civil engineering, architecture and urbanism
NDT for microstructure and moisture investigation of porous building material
Non-destructive testing methods are mostly applied and established for the detection of embedded mounting parts or structural defects in building elements. The assessment of the concrete microstructure or microstructural changes like chemical alterations or the formation of microcracks, e.g. due to material aging, freeze-thaw cycles, alkali-silica reaction and ettringite, is not in the focus of ndt research though. Concrete moisture and enhanced salt contents, which usually trigger all chemical microstructural changes, are other material properties, lacking reliable ways of measuring. But, the assessment of such material properties, on the long term also in a depth resolved manner, is definitely important, when the sustainability of our concrete infrastructure buildings shall be evaluated. New consideration like the potential use of ndt, in particular the combination of different methods and alternate ways of data analysis are subject of research currently undertaken at BAM. These approaches involve for example working towards (i) a deeper understanding of how to measure moisture distributions reliably and follow transport phenomena, (ii) the use of stray phenomena in radar and ultrasound to locate material inhomogeneities or (iii) the application of LIBS for the delineation of diffusion and migration processes but also (iv) the use of new tools for data analysis like data fusion. First results are presented and new ideas discussed.
NDT for microstructure and moisture investigation of porous building material
Non-destructive testing methods are mostly applied and established for the detection of embedded mounting parts or structural defects in building elements. The assessment of the concrete microstructure or microstructural changes like chemical alterations or the formation of microcracks, e.g. due to material aging, freeze-thaw cycles, alkali-silica reaction and ettringite, is not in the focus of ndt research though. Concrete moisture and enhanced salt contents, which usually trigger all chemical microstructural changes, are other material properties, lacking reliable ways of measuring. But, the assessment of such material properties, on the long term also in a depth resolved manner, is definitely important, when the sustainability of our concrete infrastructure buildings shall be evaluated. New consideration like the potential use of ndt, in particular the combination of different methods and alternate ways of data analysis are subject of research currently undertaken at BAM. These approaches involve for example working towards (i) a deeper understanding of how to measure moisture distributions reliably and follow transport phenomena, (ii) the use of stray phenomena in radar and ultrasound to locate material inhomogeneities or (iii) the application of LIBS for the delineation of diffusion and migration processes but also (iv) the use of new tools for data analysis like data fusion. First results are presented and new ideas discussed.
NDT for microstructure and moisture investigation of porous building material
Kruschwitz, Sabine (author)
2015-01-01
Article (Journal)
Electronic Resource
English
COMPOSITION FOR MOISTURE CONDITIONING BUILDING MATERIAL AND MOISTURE CONDITIONING BUILDING MATERIAL
European Patent Office | 2015
|COMPOSITION FOR MOISTURE CONDITIONING BUILDING MATERIAL AND MOISTURE CONDITIONING BUILDING MATERIAL
European Patent Office | 2017
|European Patent Office | 2015
|