A platform for research: civil engineering, architecture and urbanism
Particle Number PEMS: Inter-Laboratory: Comparison Exercise
This report summarizes the results of the Inter-Laboratory Comparison Exercise for the PN-PEMS equipment that took place between September 2015 and January 2016. The accuracy and precision of PN measurement with two different PN-PEMS was assessed with one selected Golden Vehicle in seven different laboratories across Europe, providing indications for drafting the third package of the RDE regulation. The differences of the PN-PEMS to the reference system at the CVS were between -40% and +40%; similar to those between the reference system at the tailpipe and the CVS. The accuracy and precision of the PN-PEMS, as estimated by comparing them with the reference system at the tailpipe were 10.4% ± 11.9% for the diffusion charger based PN-PEMS and -8.0% ±9.5% for the CPC-based PN-PEMS. The larger differences compared to the reference system at the CVS can be explained by particle transformations between the vehicle tailpipe and the CVS and calibration uncertainties of the reference systems at the CVS. On road tests showed that the PN-PEMS were stable and measuring as in the laboratory. For the tested vehicle technology, there were not significant deviations between the PN emissions measured in the laboratory and the PN emissions measured under real driving conditions at ambient temperatures between 3°C and 25°C. ; JRC.C.4-Sustainable Transport
Particle Number PEMS: Inter-Laboratory: Comparison Exercise
This report summarizes the results of the Inter-Laboratory Comparison Exercise for the PN-PEMS equipment that took place between September 2015 and January 2016. The accuracy and precision of PN measurement with two different PN-PEMS was assessed with one selected Golden Vehicle in seven different laboratories across Europe, providing indications for drafting the third package of the RDE regulation. The differences of the PN-PEMS to the reference system at the CVS were between -40% and +40%; similar to those between the reference system at the tailpipe and the CVS. The accuracy and precision of the PN-PEMS, as estimated by comparing them with the reference system at the tailpipe were 10.4% ± 11.9% for the diffusion charger based PN-PEMS and -8.0% ±9.5% for the CPC-based PN-PEMS. The larger differences compared to the reference system at the CVS can be explained by particle transformations between the vehicle tailpipe and the CVS and calibration uncertainties of the reference systems at the CVS. On road tests showed that the PN-PEMS were stable and measuring as in the laboratory. For the tested vehicle technology, there were not significant deviations between the PN emissions measured in the laboratory and the PN emissions measured under real driving conditions at ambient temperatures between 3°C and 25°C. ; JRC.C.4-Sustainable Transport
Particle Number PEMS: Inter-Laboratory: Comparison Exercise
RICCOBONO FRANCESCO (author) / GIECHASKIEL Barouch (author) / MENDOZA VILLAFUERTE PABLO (author)
2016-09-23
Miscellaneous
Electronic Resource
English
DDC:
690
Comparison of portable emissions measurement systems (PEMS) with laboratory grade equipment
BASE | 2018
|Mechanically strong sulfonated polybenzimidazole PEMs with enhanced proton conductivity
British Library Online Contents | 2019
|Inter-laboratory exercise on steroid estrogens in aqueous samples
Online Contents | 2010
|