A platform for research: civil engineering, architecture and urbanism
How models of canonical microcircuits implement cognitive functions
Major cognitive functions such as language, memory, and decision-making are thought to rely on distributed networks of a large number of fundamental neural elements, called canonical microcircuits. A mechanistic understanding of the interaction of these canonical microcircuits promises a better comprehension of cognitive functions as well as their potential disorders and corresponding treatment techniques. This thesis establishes a generative modeling framework that rests on canonical microcircuits and employs it to investigate composite mechanisms of cognitive functions. A generic, biologically plausible neural mass model was derived to parsimoniously represent conceivable architectures of canonical microcircuits. Time domain simulations and bifurcation and stability analyses were used to evaluate the model’s capability for basic information processing operations in response to transient stimulations, namely signal flow gating and working memory. Analysis shows that these basic operations rest upon the bistable activity of a neural population and the selectivity for the stimulus’ intensity and temporal consistency and transiency. In the model’s state space, this selectivity is marked by the distance of the system’s working point to a saddle-node bifurcation and the existence of a Hopf separatrix. The local network balance, in regard of synaptic gains, is shown to modify the model’s state space and thus its operational repertoire. Among the investigated architectures, only a three-population model that separates input-receiving and output-emitting excitatory populations exhibits the necessary state space characteristics. It is thus specified as minimal canonical microcircuit. In this three-population model, facilitative feedback information modifies the retention of sensory feedforward information. Consequently, meta-circuits of two hierarchically interacting minimal canonical microcircuits feature a temporal processing history that enables state-dependent processing operations. The relevance of these composite ...
How models of canonical microcircuits implement cognitive functions
Major cognitive functions such as language, memory, and decision-making are thought to rely on distributed networks of a large number of fundamental neural elements, called canonical microcircuits. A mechanistic understanding of the interaction of these canonical microcircuits promises a better comprehension of cognitive functions as well as their potential disorders and corresponding treatment techniques. This thesis establishes a generative modeling framework that rests on canonical microcircuits and employs it to investigate composite mechanisms of cognitive functions. A generic, biologically plausible neural mass model was derived to parsimoniously represent conceivable architectures of canonical microcircuits. Time domain simulations and bifurcation and stability analyses were used to evaluate the model’s capability for basic information processing operations in response to transient stimulations, namely signal flow gating and working memory. Analysis shows that these basic operations rest upon the bistable activity of a neural population and the selectivity for the stimulus’ intensity and temporal consistency and transiency. In the model’s state space, this selectivity is marked by the distance of the system’s working point to a saddle-node bifurcation and the existence of a Hopf separatrix. The local network balance, in regard of synaptic gains, is shown to modify the model’s state space and thus its operational repertoire. Among the investigated architectures, only a three-population model that separates input-receiving and output-emitting excitatory populations exhibits the necessary state space characteristics. It is thus specified as minimal canonical microcircuit. In this three-population model, facilitative feedback information modifies the retention of sensory feedforward information. Consequently, meta-circuits of two hierarchically interacting minimal canonical microcircuits feature a temporal processing history that enables state-dependent processing operations. The relevance of these composite ...
How models of canonical microcircuits implement cognitive functions
Kunze, Tim (author) / Haueisen, Jens / Knösche, Thomas / Valdes-Sosa, Pedro Antonio
2019-02-20
Theses
Electronic Resource
English
International Journal of Microcircuits and Electronic Packaging
British Library Online Contents | 2001
Magnetochemical peculiarities of manufacturing magnetoresistive sensors in integral microcircuits
British Library Online Contents | 2010
|Local Analysis of Internal Interfaces in Integrated Microcircuits by Auger Electron Spectroscopy
British Library Online Contents | 1992
|