A platform for research: civil engineering, architecture and urbanism
A CFD framework for offshore and onshore wind farm simulation
We present a wind simulation framework for offshore and onshore wind farms. The simulation framework involves an automatic hybrid high-quality mesh generation process, a pre-processing to impose initial and boundary conditions, and a solver for the Reynolds Averaged Navier-Stokes (RANS) equations with two different turbulence models, a modified standard k-epsilon model and a realizable k-epsilon model in which we included the Coriolis effects. Wind turbines are modeled as actuator discs. The wind farm simulation framework has been implemented in Alya, an in-house High Performance Computing (HPC) multi-physics finite element parallel solver. An application example is shown for an onshore wind farm composed of 165 turbines. ; This work has been supported by the EU H2020 projects New European Wind Atlas ERA-NET PLUS (NEWA), High Performance Computing for Energy (HPC4E, grant agreement 689772), and the Energy oriented Centre of Excellence (EoCoE, grant agreement 676629). We also thank two anonymous reviewers for their constructive comments on the first version of the manuscript. ; Peer Reviewed ; Postprint (published version)
A CFD framework for offshore and onshore wind farm simulation
We present a wind simulation framework for offshore and onshore wind farms. The simulation framework involves an automatic hybrid high-quality mesh generation process, a pre-processing to impose initial and boundary conditions, and a solver for the Reynolds Averaged Navier-Stokes (RANS) equations with two different turbulence models, a modified standard k-epsilon model and a realizable k-epsilon model in which we included the Coriolis effects. Wind turbines are modeled as actuator discs. The wind farm simulation framework has been implemented in Alya, an in-house High Performance Computing (HPC) multi-physics finite element parallel solver. An application example is shown for an onshore wind farm composed of 165 turbines. ; This work has been supported by the EU H2020 projects New European Wind Atlas ERA-NET PLUS (NEWA), High Performance Computing for Energy (HPC4E, grant agreement 689772), and the Energy oriented Centre of Excellence (EoCoE, grant agreement 676629). We also thank two anonymous reviewers for their constructive comments on the first version of the manuscript. ; Peer Reviewed ; Postprint (published version)
A CFD framework for offshore and onshore wind farm simulation
Avila, Matias (author) / Gargallo-Peiró, Abel (author) / Folch, Arnau (author) / Barcelona Supercomputing Center
2017-01-01
Article (Journal)
Electronic Resource
English
DDC:
710
Comparing offshore and onshore wind development considering acceptance costs
BASE | 2019
|ONSHORE & OFFSHORE DELUGE SYSTEMS
Online Contents | 1997
|