A platform for research: civil engineering, architecture and urbanism
Stabilization-solidification of high water content dredged sediment : Strength, compressibility and durability evaluations
Dredging activities at ports and harbors are inevitable for safe navigation of ships and vessels. The outcomes of dredging are huge volumes of dredged materials, which can range from very fine and contaminated sediments to sands and gravels. The coarse sands and gravels can be directly used in civil engineering applications. The fine dredged sediments (DS) are usually associated with high water content, low shear strength, high compressibility and presence of contaminants. However, these unfavorable properties do not exclude the suitability of fined dredged sediments for use in geotechnical applications. Stabilization-solidification technology provides a comprehensive treatment method for improving strength, reducing the compressibility and mobilizing the contaminants to be less mobile.These properties make the stabilized fine dredged material (SDM) suitable for use in civil engineering applications (e.g. road embankment or structural backfill in land reclamation).However, stabilization-solidification is not a magic wand by which every geotechnical property is improved for better. In cold region climates, repetitive freeze–thaw cycles have detrimental effects to the strength and hydraulic properties of the SDM. Consequently, the applications and long term performance of the SDM under repetitive freeze-thaw cycles are still uncertain.Successful stabilization–solidification of the DS and the performance of the SDM depend on stabilization methods and materials. Process stabilization-solidification (PSS) is convenient technology for amending high water content DS with binders. The use of composite binders for stabilization–solidification of the DS is increasing due to increased artificial pozzolanas that can be used as supplementary cementitious materials (SCM). Primary binders such as cement can be supplemented with SCM (e.g. fly ash and ground granulated blast furnace slag). Cement hydration is a complex process with a complex series of unknown chemical reactions. The hydration of cement incorporating SCM is more ...
Stabilization-solidification of high water content dredged sediment : Strength, compressibility and durability evaluations
Dredging activities at ports and harbors are inevitable for safe navigation of ships and vessels. The outcomes of dredging are huge volumes of dredged materials, which can range from very fine and contaminated sediments to sands and gravels. The coarse sands and gravels can be directly used in civil engineering applications. The fine dredged sediments (DS) are usually associated with high water content, low shear strength, high compressibility and presence of contaminants. However, these unfavorable properties do not exclude the suitability of fined dredged sediments for use in geotechnical applications. Stabilization-solidification technology provides a comprehensive treatment method for improving strength, reducing the compressibility and mobilizing the contaminants to be less mobile.These properties make the stabilized fine dredged material (SDM) suitable for use in civil engineering applications (e.g. road embankment or structural backfill in land reclamation).However, stabilization-solidification is not a magic wand by which every geotechnical property is improved for better. In cold region climates, repetitive freeze–thaw cycles have detrimental effects to the strength and hydraulic properties of the SDM. Consequently, the applications and long term performance of the SDM under repetitive freeze-thaw cycles are still uncertain.Successful stabilization–solidification of the DS and the performance of the SDM depend on stabilization methods and materials. Process stabilization-solidification (PSS) is convenient technology for amending high water content DS with binders. The use of composite binders for stabilization–solidification of the DS is increasing due to increased artificial pozzolanas that can be used as supplementary cementitious materials (SCM). Primary binders such as cement can be supplemented with SCM (e.g. fly ash and ground granulated blast furnace slag). Cement hydration is a complex process with a complex series of unknown chemical reactions. The hydration of cement incorporating SCM is more ...
Stabilization-solidification of high water content dredged sediment : Strength, compressibility and durability evaluations
Makusa, Gregory (author)
2015-01-01
Doctoral thesis / Luleå University of Technology 1 jan 1997 → …, 1402-1544
Theses
Electronic Resource
English
Construction method of large-scale dredged sediment solidification/stabilization projects
European Patent Office | 2021
|Compressibility of cemented dredged clay at high water content with super-absorbent polymer
British Library Online Contents | 2016
|Compressibility of cemented dredged clay at high water content with super-absorbent polymer
Online Contents | 2016
|