A platform for research: civil engineering, architecture and urbanism
FACADE SYSTEM MADE OF POROUS MATERIALS
The proposed multi-component façade system is made of porous concretes employed both as bearing structures and for heat insulation and fireproofing purposes. The authors also provide their recommendations in respect of the mounting of the proposed façade system. The façade system considered in the article is composed of wall foam concrete blocks reinforced by basalt fibers (bearing elements of the structure), cellular concrete polystyrene (thermal insulation), and porous concrete (fireproofing and thermal insulation). Retained shuttering (in the fireproofing sections) represents chrysolite cement sheets attached to the structures composed of glass-fiber plastic elements. The application of insulating porous concrete as a fireproofing material is based on the principle of adjustable stress-strained states of materials in the environment of variable pressure. This technology was developed at Moscow State University of Civil Engineering, and it was initially designated for the manufacturing of tailor-made products. The above concrete is also designated for retained shuttering and modified cavity masonry walls. Porous concrete that expands inside the fireproofing cavity ensures a tight contact both with the basic material and thermal insulation plates. The use of materials of the same origin (Portland cement) means the formation of strong transition zones connecting the system components in the course of its hardening and further operation. The results of the thermotechnical calculation demonstrate that the thermal resistance registered on the surface of the wall that is 3 meters high (that has a 0.4 m fireproofing cavity) is equal to 3.98 sq. m. C/Wt. The value of the coefficient of thermotechnical heterogeneity (r) is equal to 0.86 with account for the thickness and thermal conductivity of point and linear elements. If the thermotechnical heterogeneity is taken into consideration, the thermal resistance of the proposed wall is equal to 3.42 m2 С/Wt.
FACADE SYSTEM MADE OF POROUS MATERIALS
The proposed multi-component façade system is made of porous concretes employed both as bearing structures and for heat insulation and fireproofing purposes. The authors also provide their recommendations in respect of the mounting of the proposed façade system. The façade system considered in the article is composed of wall foam concrete blocks reinforced by basalt fibers (bearing elements of the structure), cellular concrete polystyrene (thermal insulation), and porous concrete (fireproofing and thermal insulation). Retained shuttering (in the fireproofing sections) represents chrysolite cement sheets attached to the structures composed of glass-fiber plastic elements. The application of insulating porous concrete as a fireproofing material is based on the principle of adjustable stress-strained states of materials in the environment of variable pressure. This technology was developed at Moscow State University of Civil Engineering, and it was initially designated for the manufacturing of tailor-made products. The above concrete is also designated for retained shuttering and modified cavity masonry walls. Porous concrete that expands inside the fireproofing cavity ensures a tight contact both with the basic material and thermal insulation plates. The use of materials of the same origin (Portland cement) means the formation of strong transition zones connecting the system components in the course of its hardening and further operation. The results of the thermotechnical calculation demonstrate that the thermal resistance registered on the surface of the wall that is 3 meters high (that has a 0.4 m fireproofing cavity) is equal to 3.98 sq. m. C/Wt. The value of the coefficient of thermotechnical heterogeneity (r) is equal to 0.86 with account for the thickness and thermal conductivity of point and linear elements. If the thermotechnical heterogeneity is taken into consideration, the thermal resistance of the proposed wall is equal to 3.42 m2 С/Wt.
FACADE SYSTEM MADE OF POROUS MATERIALS
Zhukov Aleksey Dmitrievich (author) / Chugunkov Aleksandr Viktorovich (author)
2012
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0