A platform for research: civil engineering, architecture and urbanism
Simulating Human Visual Perception in Tunnel Portals
To study the characteristics of light and dark adaptation in tunnel portals, and to determine the influencing factors in light–dark vision adaptation, basic tunnel lighting and linear design data were obtained. In this study, we used a light-shielded tent to simulate the dark environment of a tunnel, observe the driver recognition time for target objects during the light–dark adaptation process, and analyze the light–dark adaptation time of human vision. Based on the experimental data, we examined the relationships between age, gender, illuminance, and light and dark adaptation times, and established a model for these relationships. The experimental results show that the dark adaptation time is generally longer than the light adaptation time. The dark adaptation time is positively related to age and exhibits a cubic relationship. There is no significant correlation between the light adaptation time and age, but the overall trend is for the light adaptation time to gradually increase with increasing age. There is no correlation between gender and light and dark adaptation times, but there is a notable correlation between light and dark adaptation times and illuminance. When the illuminance ranges from 11,000 to 13,000 lux, the light and dark adaptation times are the longest.
Simulating Human Visual Perception in Tunnel Portals
To study the characteristics of light and dark adaptation in tunnel portals, and to determine the influencing factors in light–dark vision adaptation, basic tunnel lighting and linear design data were obtained. In this study, we used a light-shielded tent to simulate the dark environment of a tunnel, observe the driver recognition time for target objects during the light–dark adaptation process, and analyze the light–dark adaptation time of human vision. Based on the experimental data, we examined the relationships between age, gender, illuminance, and light and dark adaptation times, and established a model for these relationships. The experimental results show that the dark adaptation time is generally longer than the light adaptation time. The dark adaptation time is positively related to age and exhibits a cubic relationship. There is no significant correlation between the light adaptation time and age, but the overall trend is for the light adaptation time to gradually increase with increasing age. There is no correlation between gender and light and dark adaptation times, but there is a notable correlation between light and dark adaptation times and illuminance. When the illuminance ranges from 11,000 to 13,000 lux, the light and dark adaptation times are the longest.
Simulating Human Visual Perception in Tunnel Portals
Changjiang Liu (author) / Qiuping Wang (author)
2021
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Monolithic concrete tunnel portals
Engineering Index Backfile | 1932
|Engineering Index Backfile | 1935
|Canopied portals for NATM rail tunnel
Online Contents | 1993
|Boulder dam -- Tailbay and tunnel portals altered
Engineering Index Backfile | 1946
|Protection of tunnel portals against rock fall
British Library Conference Proceedings | 2001
|