A platform for research: civil engineering, architecture and urbanism
Predicting Eucalyptus Diameter at Breast Height and Total Height with UAV-Based Spectral Indices and Machine Learning
Machine learning techniques (ML) have gained attention in precision agriculture practices since they efficiently address multiple applications, like estimating the growth and yield of trees in forest plantations. The combination between ML algorithms and spectral vegetation indices (VIs) from high-spatial-resolution line measurement, segment: 0.079024 m multispectral imagery, could optimize the prediction of these biometric variables. In this paper, we investigate the performance of ML techniques and VIs acquired with an unnamed aerial vehicle (UAV) to predict the diameter at breast height (DBH) and total height (Ht) of eucalyptus trees. An experimental site with six eucalyptus species was selected, and the Parrot Sequoia sensor was used. Several ML techniques were evaluated, like random forest (RF), REPTree (DT), alternating model tree (AT,) k-nearest neighbor (KNN), support vector machine (SVM), artificial neural network (ANN), linear regression (LR), and radial basis function (RBF). Each algorithm performance was verified using the correlation coefficient (r) and the mean absolute error (MAE). We used, as input, 34 VIs as numeric variables to predict DHB and Ht. We also added to the model a categorical variable as input identifying the different eucalyptus trees species. The RF technique obtained an overall superior estimation for all the tested configurations. Still, the RBF also showed a higher performance for predicting DHB, numerically surpassing the RF both in r and MAE, in some cases. For Ht variable, the technique that obtained the smallest MAE was SVM, though in a particular test. In this regard, we conclude that a combination of ML and VIs extracted from UAV-based imagery is suitable to estimate DBH and Ht in eucalyptus species. The approach presented constitutes an interesting contribution to the inventory and management of planted forests.
Predicting Eucalyptus Diameter at Breast Height and Total Height with UAV-Based Spectral Indices and Machine Learning
Machine learning techniques (ML) have gained attention in precision agriculture practices since they efficiently address multiple applications, like estimating the growth and yield of trees in forest plantations. The combination between ML algorithms and spectral vegetation indices (VIs) from high-spatial-resolution line measurement, segment: 0.079024 m multispectral imagery, could optimize the prediction of these biometric variables. In this paper, we investigate the performance of ML techniques and VIs acquired with an unnamed aerial vehicle (UAV) to predict the diameter at breast height (DBH) and total height (Ht) of eucalyptus trees. An experimental site with six eucalyptus species was selected, and the Parrot Sequoia sensor was used. Several ML techniques were evaluated, like random forest (RF), REPTree (DT), alternating model tree (AT,) k-nearest neighbor (KNN), support vector machine (SVM), artificial neural network (ANN), linear regression (LR), and radial basis function (RBF). Each algorithm performance was verified using the correlation coefficient (r) and the mean absolute error (MAE). We used, as input, 34 VIs as numeric variables to predict DHB and Ht. We also added to the model a categorical variable as input identifying the different eucalyptus trees species. The RF technique obtained an overall superior estimation for all the tested configurations. Still, the RBF also showed a higher performance for predicting DHB, numerically surpassing the RF both in r and MAE, in some cases. For Ht variable, the technique that obtained the smallest MAE was SVM, though in a particular test. In this regard, we conclude that a combination of ML and VIs extracted from UAV-based imagery is suitable to estimate DBH and Ht in eucalyptus species. The approach presented constitutes an interesting contribution to the inventory and management of planted forests.
Predicting Eucalyptus Diameter at Breast Height and Total Height with UAV-Based Spectral Indices and Machine Learning
Ana Karina Vieira da Silva (author) / Marcus Vinicius Vieira Borges (author) / Tays Silva Batista (author) / Carlos Antonio da Silva Junior (author) / Danielle Elis Garcia Furuya (author) / Lucas Prado Osco (author) / Larissa Pereira Ribeiro Teodoro (author) / Fábio Henrique Rojo Baio (author) / Ana Paula Marques Ramos (author) / Wesley Nunes Gonçalves (author)
2021
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Tree Diameter at Breast Height Extraction Based on Mobile Laser Scanning Point Cloud
DOAJ | 2024
|