A platform for research: civil engineering, architecture and urbanism
Talaromyces purpurogenus Isolated from Rhizosphere Soil of Maize Has Efficient Organic Phosphate-Mineralizing and Plant Growth-Promoting Abilities
The scarcity of phosphorus (P) makes improving phosphorus use efficiency a critical issue in crop production. Plant rhizosphere microorganisms play a vital role in increasing phosphorus bioavailability and promoting the level of plant-absorbable P in agroecosystems. In this study, Talaromyces purpurogenus SW-10 strain with efficient organic phosphate-mineralizing ability was isolated from maize rhizosphere soil. SW-10 showed efficient phytate utilization with corresponding soluble P levels of 525.43 mg/L and produced phytase in the liquid medium. The response surface methodology (RSM) analysis showed that glucose as the carbon source and (NH4)2SO4 as the nitrogen source at 28 °C and pH 7.0 promoted higher mineralization of insoluble organic phosphate. When cocultivated with different genotypes of maize seedlings, SW-10 significantly increased the shoot’s dry weight by 37.93%, root’s dry weight by 31.25%, and the plant height by 13.03% for low-P sensitive inbred line 31778, while no significant change was observed in the low-P tolerance inbred line CCM454. In addition, SW-10 strain significantly increased total P-concentration in the shoots (22.4%~32.9%) and roots (3.10%~9.77%) for both inbred lines. In conclusion, the isolated T. purpurogenus SW-10 strain possesses an efficient organic phosphate-mineralizing ability and maize plant growth-promoting effect, especially for the low-P sensitive genotype that could be exploited for enhancing P availability in agriculture.
Talaromyces purpurogenus Isolated from Rhizosphere Soil of Maize Has Efficient Organic Phosphate-Mineralizing and Plant Growth-Promoting Abilities
The scarcity of phosphorus (P) makes improving phosphorus use efficiency a critical issue in crop production. Plant rhizosphere microorganisms play a vital role in increasing phosphorus bioavailability and promoting the level of plant-absorbable P in agroecosystems. In this study, Talaromyces purpurogenus SW-10 strain with efficient organic phosphate-mineralizing ability was isolated from maize rhizosphere soil. SW-10 showed efficient phytate utilization with corresponding soluble P levels of 525.43 mg/L and produced phytase in the liquid medium. The response surface methodology (RSM) analysis showed that glucose as the carbon source and (NH4)2SO4 as the nitrogen source at 28 °C and pH 7.0 promoted higher mineralization of insoluble organic phosphate. When cocultivated with different genotypes of maize seedlings, SW-10 significantly increased the shoot’s dry weight by 37.93%, root’s dry weight by 31.25%, and the plant height by 13.03% for low-P sensitive inbred line 31778, while no significant change was observed in the low-P tolerance inbred line CCM454. In addition, SW-10 strain significantly increased total P-concentration in the shoots (22.4%~32.9%) and roots (3.10%~9.77%) for both inbred lines. In conclusion, the isolated T. purpurogenus SW-10 strain possesses an efficient organic phosphate-mineralizing ability and maize plant growth-promoting effect, especially for the low-P sensitive genotype that could be exploited for enhancing P availability in agriculture.
Talaromyces purpurogenus Isolated from Rhizosphere Soil of Maize Has Efficient Organic Phosphate-Mineralizing and Plant Growth-Promoting Abilities
Xuefang Sun (author) / Feng Liu (author) / Wen Jiang (author) / Peiyu Zhang (author) / Zixuan Zhao (author) / Xiang Liu (author) / Yan Shi (author) / Qing Sun (author)
2023
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Changes of copper speciation in maize rhizosphere soil
Online Contents | 2003
|Efficient calcium mineralizing bacterium and application thereof
European Patent Office | 2020
|