A platform for research: civil engineering, architecture and urbanism
Novel Water-Soluble Poly(terephthalic-co-glycerol-g-fumaric acid) Copolymer Nanoparticles Harnessed as Pore Formers for Polyethersulfone Membrane Modification: Permeability–Selectivity Tradeoff Manipulation
This work presents poly(terephthalic-co-glycerol-g-fumaric acid) (TGF) as a novel water-soluble polymeric nano-additive for the modification of a polyethersulfone ultrafiltration membrane. The TGF was harnessed as a pore former, aiming to improve the membrane surface porosity and hydrophilicity. Modified membranes were characterized to observe the influence of varying the TGF content on their hydrophilicity, porosity, morphological structure, and composition, as well as their entire performance. The results disclosed that porosity and hydrophilicity of the modified membrane prepared using 4 wt.% TGF content recorded an enhancement by 24% and 38%, respectively. Herein, the lower contact angle was mainly a reflection of the improved porosity, but not of the hydrophilic nature of water-soluble TGF. Furthermore, upon increasing the TGF content in the polymeric matrix, a more porous structure with longer finger-like micropores was formed. Moreover, a sponge-like layer clearly appeared near the bottom surface. Nevertheless, at optimum TGF content (4%), a clear enhancement in the water flux and BSA retention was witnessed by values of 298 LMH and 97%, respectively. These results demonstrate that the obtained permeation and separation behavior of the PES/TGF membrane could stand as a promising choice for water and wastewater treatment applications.
Novel Water-Soluble Poly(terephthalic-co-glycerol-g-fumaric acid) Copolymer Nanoparticles Harnessed as Pore Formers for Polyethersulfone Membrane Modification: Permeability–Selectivity Tradeoff Manipulation
This work presents poly(terephthalic-co-glycerol-g-fumaric acid) (TGF) as a novel water-soluble polymeric nano-additive for the modification of a polyethersulfone ultrafiltration membrane. The TGF was harnessed as a pore former, aiming to improve the membrane surface porosity and hydrophilicity. Modified membranes were characterized to observe the influence of varying the TGF content on their hydrophilicity, porosity, morphological structure, and composition, as well as their entire performance. The results disclosed that porosity and hydrophilicity of the modified membrane prepared using 4 wt.% TGF content recorded an enhancement by 24% and 38%, respectively. Herein, the lower contact angle was mainly a reflection of the improved porosity, but not of the hydrophilic nature of water-soluble TGF. Furthermore, upon increasing the TGF content in the polymeric matrix, a more porous structure with longer finger-like micropores was formed. Moreover, a sponge-like layer clearly appeared near the bottom surface. Nevertheless, at optimum TGF content (4%), a clear enhancement in the water flux and BSA retention was witnessed by values of 298 LMH and 97%, respectively. These results demonstrate that the obtained permeation and separation behavior of the PES/TGF membrane could stand as a promising choice for water and wastewater treatment applications.
Novel Water-Soluble Poly(terephthalic-co-glycerol-g-fumaric acid) Copolymer Nanoparticles Harnessed as Pore Formers for Polyethersulfone Membrane Modification: Permeability–Selectivity Tradeoff Manipulation
Khalid T. Rashid (author) / Haiyam M. Alayan (author) / Alyaa E. Mahdi (author) / Mohammad N. AL-Baiati (author) / Hasan Sh. Majdi (author) / Issam K. Salih (author) / Jamal M. Ali (author) / Qusay F. Alsalhy (author)
2022
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
HARNESSED JOINTS FOR WATER PIPE
Wiley | 1969
|Antifouling polyethersulfone membrane blended with a dual-mode amphiphilic copolymer
British Library Online Contents | 2016
|Structural Evaluation of Harnessed Joints
British Library Conference Proceedings | 1999
|