A platform for research: civil engineering, architecture and urbanism
Impact of Climate Change on the Irrigation Water Requirement in Northern Taiwan
The requirement for irrigation water would be affected by the variation of meteorological effects under the conditions of climate change, and irrigation water will always be the major portion of the water consumption in Taiwan. This study tries to assess the impact on irrigation water by climate change in Taoyuan in northern Taiwan. Projected rainfall and temperature during 2046–2065 are adopted from five downscaled general circulation models. The future evapotranspiration is derived from the Hamon method and corrected with the quadrant transformation method. Based on the projections and a water balance model in paddy fields, the future crop water requirement, effective rainfall and the demand for water for irrigation can be calculated. A comparison between the present (2004–2011) and the future (2046–2065) clearly shows that climate change would lead both rainfall and the temperature to rise; this would cause effective rainfall and crop water requirement to increase during cropping seasons in the future. Overall, growing effective rainfall neutralizes increasing crop water requirement, the difference of average irrigation water requirement between the present and future is insignificant (<2.5%). However, based on a five year return period, the future irrigation requirement is 7.1% more than the present in the first cropping season, but it is insignificantly less (2.1%) than the present in the second cropping season.
Impact of Climate Change on the Irrigation Water Requirement in Northern Taiwan
The requirement for irrigation water would be affected by the variation of meteorological effects under the conditions of climate change, and irrigation water will always be the major portion of the water consumption in Taiwan. This study tries to assess the impact on irrigation water by climate change in Taoyuan in northern Taiwan. Projected rainfall and temperature during 2046–2065 are adopted from five downscaled general circulation models. The future evapotranspiration is derived from the Hamon method and corrected with the quadrant transformation method. Based on the projections and a water balance model in paddy fields, the future crop water requirement, effective rainfall and the demand for water for irrigation can be calculated. A comparison between the present (2004–2011) and the future (2046–2065) clearly shows that climate change would lead both rainfall and the temperature to rise; this would cause effective rainfall and crop water requirement to increase during cropping seasons in the future. Overall, growing effective rainfall neutralizes increasing crop water requirement, the difference of average irrigation water requirement between the present and future is insignificant (<2.5%). However, based on a five year return period, the future irrigation requirement is 7.1% more than the present in the first cropping season, but it is insignificantly less (2.1%) than the present in the second cropping season.
Impact of Climate Change on the Irrigation Water Requirement in Northern Taiwan
Jyun-Long Lee (author) / Wen-Cheng Huang (author)
2014
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Climate change impact on water resources of medium irrigation tank
Taylor & Francis Verlag | 2021
|