A platform for research: civil engineering, architecture and urbanism
Migrating towards Using Electric Vehicles in Campus-Proposed Methods for Fleet Optimization
Managing a fleet efficiently to address demand within cost constraints is a challenge. Mismatched fleet size and demand can create suboptimal budget allocations and inconvenience users. To address this problem, many studies have been conducted around heterogeneous fleet optimization. That research has not included an examination of different vehicle types with travel distance constraints. This study focuses on optimizing the University of Tennessee (UT) motor pool which has a heterogeneous fleet that includes electric vehicles (EVs) with a travel distance and recharge time constraint. After assessing UT motor pool trip patterns as a case study, a queuing model was used to estimate the maximum number of each vehicle type needed to minimize the expected customer wait time to near zero. The break-even point is used for the optimization model to constrain the minimum number of years that electric vehicles should be operated under the no-subsidy assumption. The results show that the fleet has surplus vehicles. In addition to reducing the number of vehicles, total fleet costs could be minimized by using electric vehicles for all trips less than 100 miles. The models are flexible and can be applied and help fleet managers make decisions about fleet size and EV adoption.
Migrating towards Using Electric Vehicles in Campus-Proposed Methods for Fleet Optimization
Managing a fleet efficiently to address demand within cost constraints is a challenge. Mismatched fleet size and demand can create suboptimal budget allocations and inconvenience users. To address this problem, many studies have been conducted around heterogeneous fleet optimization. That research has not included an examination of different vehicle types with travel distance constraints. This study focuses on optimizing the University of Tennessee (UT) motor pool which has a heterogeneous fleet that includes electric vehicles (EVs) with a travel distance and recharge time constraint. After assessing UT motor pool trip patterns as a case study, a queuing model was used to estimate the maximum number of each vehicle type needed to minimize the expected customer wait time to near zero. The break-even point is used for the optimization model to constrain the minimum number of years that electric vehicles should be operated under the no-subsidy assumption. The results show that the fleet has surplus vehicles. In addition to reducing the number of vehicles, total fleet costs could be minimized by using electric vehicles for all trips less than 100 miles. The models are flexible and can be applied and help fleet managers make decisions about fleet size and EV adoption.
Migrating towards Using Electric Vehicles in Campus-Proposed Methods for Fleet Optimization
Taekwan Yoon (author) / Christopher R. Cherry (author)
2018
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Operations of a Taxi Fleet for Advance Reservations Using Electric Vehicles and Charging Stations
British Library Online Contents | 2013
|Optimizing the Use of Electric Vehicles in a Regional Car Rental Fleet
British Library Online Contents | 2014
|