A platform for research: civil engineering, architecture and urbanism
A Method for the Assessment of Underground Renewable Reserves for Large Regions: Its Importance in Water Supply Regulation
The growing interest in groundwater as a sustainable resource for water supply regulation is noteworthy. Just as surface reservoirs in many countries are primarily designed to manage seasonal fluctuations throughout the year, aquifers possess significant reserves, making them particularly well suited for interannual regulation, especially during droughts. In the face of climate change, this form of regulation may increasingly highlight the importance of groundwater resources. For instance, the temporary use of groundwater reserves through intensive pumping in arid or semiarid regions, compensating for seasonal or interannual variations in natural water recharge, can significantly affect aquifers. The exploitation of groundwater reserves may lead to adverse effects over time, eventually being deemed overexploitation and subject to environmental or even legal issues. This work assesses the interannual regulation capacity of aquifers and estimates the groundwater renewal rates and periods for aquifers according to river basins. We first present the mathematical background and development of a method to assess the hydrodynamic volumes (renewable groundwater reserves) in large regions. This method builds on prior knowledge of the distribution functions of spring water contributions based on their discharge and for lithological groups exhibiting similar hydrogeological behavior. Furthermore, it establishes a relationship between spring discharges and hydrodynamic volumes, facilitating the integration of the latter based on discharge. Although proposed for Spain, the method can also be implemented to other regions where data are available.
A Method for the Assessment of Underground Renewable Reserves for Large Regions: Its Importance in Water Supply Regulation
The growing interest in groundwater as a sustainable resource for water supply regulation is noteworthy. Just as surface reservoirs in many countries are primarily designed to manage seasonal fluctuations throughout the year, aquifers possess significant reserves, making them particularly well suited for interannual regulation, especially during droughts. In the face of climate change, this form of regulation may increasingly highlight the importance of groundwater resources. For instance, the temporary use of groundwater reserves through intensive pumping in arid or semiarid regions, compensating for seasonal or interannual variations in natural water recharge, can significantly affect aquifers. The exploitation of groundwater reserves may lead to adverse effects over time, eventually being deemed overexploitation and subject to environmental or even legal issues. This work assesses the interannual regulation capacity of aquifers and estimates the groundwater renewal rates and periods for aquifers according to river basins. We first present the mathematical background and development of a method to assess the hydrodynamic volumes (renewable groundwater reserves) in large regions. This method builds on prior knowledge of the distribution functions of spring water contributions based on their discharge and for lithological groups exhibiting similar hydrogeological behavior. Furthermore, it establishes a relationship between spring discharges and hydrodynamic volumes, facilitating the integration of the latter based on discharge. Although proposed for Spain, the method can also be implemented to other regions where data are available.
A Method for the Assessment of Underground Renewable Reserves for Large Regions: Its Importance in Water Supply Regulation
Joaquín Sanz de Ojeda (author) / Eugenio Sanz-Pérez (author) / Juan Carlos Mosquera-Feijóo (author)
2024
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Island outer ring aquitard design method for increasing island underground fresh water reserves
European Patent Office | 2020
|