A platform for research: civil engineering, architecture and urbanism
Tertiary Denitrification of the Secondary Effluent by Denitrifying Biofilters Packed with Different Sizes of Quartz Sand
Tertiary denitrification of the secondary effluent in wastewater treatment plants is necessary to control the eutrophication of receiving water bodies. Two denitrifying biofilters (DNBF), one packed with quart sand with sizes of 2–4 mm (DNBFS) and the other of 4–6 mm (DNBFL), were operated for tertiary denitrification under empty bed retention times (EBRTs) of 30 min, 15 min and 7.5 min, respectively. Under EBRTs of 30 min, 15 min and 7.5 min, the NO3−-N removal percentages were 93%, 82% and 83% in DNBFS, and were 92%, 68% and 36% in DNBFL, respectively. The nitrogen removal loading rates increased with decreasing EBRTs, and at the EBRT of 7.5 min, the rate was 2.15 kg/(m3·d) in DNBFS and 1.08 kg/(m3·d) in DNBFL. The half-order denitrification coefficient of DNBFS increased from 0.42 (mg/L)1/2/min at the EBRT of 30 min to 0.70 (mg/L)1/2/min at the EBRT of 7.5 min, while did not vary much in DNBFL with values from 0.22 to 0.25 (mg/L)1/2/min. The performance of both DNBFs was stable within each backwashing cycle, with the NO3−-N removal percentage variation within 5%. Better denitrification was achieved in DNBFS but with a slightly high decreased flow rate during the operation.
Tertiary Denitrification of the Secondary Effluent by Denitrifying Biofilters Packed with Different Sizes of Quartz Sand
Tertiary denitrification of the secondary effluent in wastewater treatment plants is necessary to control the eutrophication of receiving water bodies. Two denitrifying biofilters (DNBF), one packed with quart sand with sizes of 2–4 mm (DNBFS) and the other of 4–6 mm (DNBFL), were operated for tertiary denitrification under empty bed retention times (EBRTs) of 30 min, 15 min and 7.5 min, respectively. Under EBRTs of 30 min, 15 min and 7.5 min, the NO3−-N removal percentages were 93%, 82% and 83% in DNBFS, and were 92%, 68% and 36% in DNBFL, respectively. The nitrogen removal loading rates increased with decreasing EBRTs, and at the EBRT of 7.5 min, the rate was 2.15 kg/(m3·d) in DNBFS and 1.08 kg/(m3·d) in DNBFL. The half-order denitrification coefficient of DNBFS increased from 0.42 (mg/L)1/2/min at the EBRT of 30 min to 0.70 (mg/L)1/2/min at the EBRT of 7.5 min, while did not vary much in DNBFL with values from 0.22 to 0.25 (mg/L)1/2/min. The performance of both DNBFs was stable within each backwashing cycle, with the NO3−-N removal percentage variation within 5%. Better denitrification was achieved in DNBFS but with a slightly high decreased flow rate during the operation.
Tertiary Denitrification of the Secondary Effluent by Denitrifying Biofilters Packed with Different Sizes of Quartz Sand
Nan Wei (author) / Yunhong Shi (author) / Guangxue Wu (author) / Hongying Hu (author) / Yihui Wu (author) / Hui Wen (author)
2014
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Modeling and Preliminary Design Criteria for Packed Bed-Biofilters
British Library Conference Proceedings | 1992
|Reclamation of Tile Effluent: Denitrifying Woodchip Bioreactors
British Library Conference Proceedings | 2010
|Self-Aggregation and Denitrifying Strains Accelerate Granulation and Enhance Denitrification
DOAJ | 2022
|