A platform for research: civil engineering, architecture and urbanism
Assessment of Landscape Retention Water Capacity and Hydrological Balance in Traditional Agricultural Landscape (Model Area Liptovská Teplička Settlements, Slovakia)
The hydration potential of a landscape is an increasingly important attribute in a time of advancing climate change, making its assessment also a matter of some urgency. This study used the landscape ecological approach involving the hydrological balance, in which the soil water retention capacity (SWRC) and landscape water retention capacity (LWRC) are evaluated. To support our assessment of the water retention capacity in the landscape (LWRC), we used a synthetic interconnection of analytical vector layers of selected physical parameters of soil subtypes and secondary landscape structure (SLS) to create homogeneous polygons in the GIS Arc/Map10 computing environment. Selected abiotic and biotic attributes were assigned coefficients using a simple algorithm according to the authors, which were projected into landscape ecological complexes (LEC) in the GIS computer program in the Arc/Map10 program. We used hydrological balance calculations to specify the volumes of water retained in the landscape. The aim is to spatially estimate the retention capacity of the landscape, taking into account the current land use, including historical anti-erosion measures to reduce unwanted water runoff and soil erosion. Using zonal statistics, we achieved the following results. The part of the model area with very low or low LWCR represents 39.91% of the agricultural land used. We recorded a high LWCR on 17.69% of the area, with a predominance of meadows and cultizol cambis and cultizol fluvials. The calculation of the hydrological balance, which represents only 22.9% of atmospheric precipitation, also made a significant contribution to our knowledge of the LWRC.
Assessment of Landscape Retention Water Capacity and Hydrological Balance in Traditional Agricultural Landscape (Model Area Liptovská Teplička Settlements, Slovakia)
The hydration potential of a landscape is an increasingly important attribute in a time of advancing climate change, making its assessment also a matter of some urgency. This study used the landscape ecological approach involving the hydrological balance, in which the soil water retention capacity (SWRC) and landscape water retention capacity (LWRC) are evaluated. To support our assessment of the water retention capacity in the landscape (LWRC), we used a synthetic interconnection of analytical vector layers of selected physical parameters of soil subtypes and secondary landscape structure (SLS) to create homogeneous polygons in the GIS Arc/Map10 computing environment. Selected abiotic and biotic attributes were assigned coefficients using a simple algorithm according to the authors, which were projected into landscape ecological complexes (LEC) in the GIS computer program in the Arc/Map10 program. We used hydrological balance calculations to specify the volumes of water retained in the landscape. The aim is to spatially estimate the retention capacity of the landscape, taking into account the current land use, including historical anti-erosion measures to reduce unwanted water runoff and soil erosion. Using zonal statistics, we achieved the following results. The part of the model area with very low or low LWCR represents 39.91% of the agricultural land used. We recorded a high LWCR on 17.69% of the area, with a predominance of meadows and cultizol cambis and cultizol fluvials. The calculation of the hydrological balance, which represents only 22.9% of atmospheric precipitation, also made a significant contribution to our knowledge of the LWRC.
Assessment of Landscape Retention Water Capacity and Hydrological Balance in Traditional Agricultural Landscape (Model Area Liptovská Teplička Settlements, Slovakia)
Zdena Krnáčová (author) / Pavol Kenderessy (author) / Juraj Hreško (author) / Daniel Kubínsky (author) / Marta Dobrovodská (author)
2020
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Recognition and optimization of landscape genes in traditional settlements: a case of Meishan area
DOAJ | 2025
|