A platform for research: civil engineering, architecture and urbanism
A Paleo Perspective of Alabama and Florida (USA) Interstate Streamflow
Seasonal reconstructions of streamflow are valuable because they provide water planners, policy makers, and stakeholders with information on the range and variability of water resources before the observational period. In this study, we used streamflow data from five gages near the Alabama-Florida border and centuries-long tree-ring chronologies to create and analyze seasonal flow reconstructions. Prescreening methods included correlation and temporal stability analysis of predictors to ensure practical and reliable reconstructions. Seasonal correlation analysis revealed that several regional tree-ring chronologies were significantly correlated (p ≤ 0.05) with March–October streamflow, and stepwise linear regression was used to create the reconstructions. Reconstructions spanned 1203–1985, 1652–1983, 1725–1993, 1867–2011, and 1238–1985 for the Choctawhatchee, Conecuh, Escambia, Perdido, and Pascagoula Rivers, respectively, all of which were statistically skillful (R2 ≥ 0.50). The reconstructions were statistically validated using the following parameters: R2 predicted validation, the sign test, the variance inflation factor (VIF), and the Durbin–Watson (D–W) statistic. The long-term streamflow variability was analyzed for the Choctawhatchee, Conecuh, Escambia, and Perdido Rivers, and the recent (2000s) drought was identified as being the most severe in the instrumental record. The 2000s drought was also identified as being one of the most severe droughts throughout the entire reconstructed paleo-record developed for all five rivers. This information is vital for the consideration of present and future conditions within the system.
A Paleo Perspective of Alabama and Florida (USA) Interstate Streamflow
Seasonal reconstructions of streamflow are valuable because they provide water planners, policy makers, and stakeholders with information on the range and variability of water resources before the observational period. In this study, we used streamflow data from five gages near the Alabama-Florida border and centuries-long tree-ring chronologies to create and analyze seasonal flow reconstructions. Prescreening methods included correlation and temporal stability analysis of predictors to ensure practical and reliable reconstructions. Seasonal correlation analysis revealed that several regional tree-ring chronologies were significantly correlated (p ≤ 0.05) with March–October streamflow, and stepwise linear regression was used to create the reconstructions. Reconstructions spanned 1203–1985, 1652–1983, 1725–1993, 1867–2011, and 1238–1985 for the Choctawhatchee, Conecuh, Escambia, Perdido, and Pascagoula Rivers, respectively, all of which were statistically skillful (R2 ≥ 0.50). The reconstructions were statistically validated using the following parameters: R2 predicted validation, the sign test, the variance inflation factor (VIF), and the Durbin–Watson (D–W) statistic. The long-term streamflow variability was analyzed for the Choctawhatchee, Conecuh, Escambia, and Perdido Rivers, and the recent (2000s) drought was identified as being the most severe in the instrumental record. The 2000s drought was also identified as being one of the most severe droughts throughout the entire reconstructed paleo-record developed for all five rivers. This information is vital for the consideration of present and future conditions within the system.
A Paleo Perspective of Alabama and Florida (USA) Interstate Streamflow
Melanie Vines (author) / Glenn Tootle (author) / Leigh Terry (author) / Emily Elliott (author) / Joni Corbin (author) / Grant L. Harley (author) / Jonghun Kam (author) / Sahar Sadeghi (author) / Matthew Therrell (author)
2021
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Stochastic Streamflow Generation Incorporating Paleo-Reconstruction
British Library Conference Proceedings | 2007
|Paleo Pacific Ocean Sea Surface Temperature Variability and Upper Colorado River Basin Streamflow
British Library Conference Proceedings | 2009
|Interstate Route 75 in Pinellas County, Florida
NTIS | 1971
Interstate Route 75 in Pinellas County, Florida
NTIS | 1972