A platform for research: civil engineering, architecture and urbanism
The Relationship between Residential Block Forms and Building Carbon Emissions to Achieve Carbon Neutrality Goals: A Case Study of Wuhan, China
Controlling building carbon emissions (CEs) is key to achieving the goal of carbon neutrality. Residential blocks are the main contributors of buildings’ carbon emissions and intensity, and thus can be manipulated to achieve carbon neutrality. This work aimed to evaluate the building carbon emissions intensity (CEI) levels of residential blocks using Rhino and Grasshopper and to quantify the relationship between the block form parameters and a building’s carbon emissions (CEs). Firstly, 48 cases were selected by stratified sampling, and they were classified by architectural typology. Secondly, the residential block morphological parameters and building carbon emissions were calculated. Thirdly, the relationship between the block form parameters and the building’s CE was quantified using statistical methods. Lastly, low-carbon planning strategies for residential blocks under the target of carbon neutrality were proposed. The findings showed that the influence of the block form parameters on a building’s CE was 31.66%. A building’s shape factor has a positive influence on its CE, and the floor area ratio, building volume–site area ratio, and building height have negative influences on its CE. A building’s shape factor, cover ratio, and surface–site area ratio synergistically impact its CE. The weight of a building’s shape factor on its carbon emissions was 3.84 times that of its cover ratio and 4.46 times that of its surface–site area ratio. The technology workflow proposed in this study can provide data in support of carbon emissions assessments and low-carbon planning strategies for urban blocks in other cities in China and worldwide.
The Relationship between Residential Block Forms and Building Carbon Emissions to Achieve Carbon Neutrality Goals: A Case Study of Wuhan, China
Controlling building carbon emissions (CEs) is key to achieving the goal of carbon neutrality. Residential blocks are the main contributors of buildings’ carbon emissions and intensity, and thus can be manipulated to achieve carbon neutrality. This work aimed to evaluate the building carbon emissions intensity (CEI) levels of residential blocks using Rhino and Grasshopper and to quantify the relationship between the block form parameters and a building’s carbon emissions (CEs). Firstly, 48 cases were selected by stratified sampling, and they were classified by architectural typology. Secondly, the residential block morphological parameters and building carbon emissions were calculated. Thirdly, the relationship between the block form parameters and the building’s CE was quantified using statistical methods. Lastly, low-carbon planning strategies for residential blocks under the target of carbon neutrality were proposed. The findings showed that the influence of the block form parameters on a building’s CE was 31.66%. A building’s shape factor has a positive influence on its CE, and the floor area ratio, building volume–site area ratio, and building height have negative influences on its CE. A building’s shape factor, cover ratio, and surface–site area ratio synergistically impact its CE. The weight of a building’s shape factor on its carbon emissions was 3.84 times that of its cover ratio and 4.46 times that of its surface–site area ratio. The technology workflow proposed in this study can provide data in support of carbon emissions assessments and low-carbon planning strategies for urban blocks in other cities in China and worldwide.
The Relationship between Residential Block Forms and Building Carbon Emissions to Achieve Carbon Neutrality Goals: A Case Study of Wuhan, China
Haitao Lian (author) / Junhan Zhang (author) / Gaomei Li (author) / Rui Ren (author)
2023
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
The changing role of hydropower to achieve carbon peak and neutrality goals in China
HENRY – Federal Waterways Engineering and Research Institute (BAW) | 2023
|CO2 Emission Reduction Potential of Road Transport to Achieve Carbon Neutrality in China
DOAJ | 2022
|