A platform for research: civil engineering, architecture and urbanism
The effect of water binder ratio on strength development of class C fly ash geopolymer mortar prepared by dry geopolymer powder
The use of geopolymer binder as cement replacement material can reduce the amount of carbon dioxide gas produced during the Portland Cement manufacturing process. However, the main issue of geopolymer binder is in the mixing process of sodium silicate and NaOH which requires specialized knowledge and strict supervision. This paper reports the effect of water binder ratio on strength development of fly ash geopolymer mortar using dry geopolymer powder. Fly ash with high calcium content was used as primary material. The dry geopolymer powder was prepared by wet mixing method which was made by drying a mixture of NaOH solution and limestone for 24 hours. The variations of water to binder ratio were 0.30, 0.35, 0.40, 0.45, and 0.50. Strength properties were measured by compressive strength at the age of 7, 14 and 28 days. The results showed that the water binder ratio significantly affect the strength development of geopolymer mortar prepared by dry geopolymer powder. The water binder ratio of 0.40 gives the highest compressive strength of 10.3 MPa at 28 days. This suggests that the use of dry geopolymer powder on geopolymer mortar production can overcome the difficulties of geopolymer mortar mixing on site.
The effect of water binder ratio on strength development of class C fly ash geopolymer mortar prepared by dry geopolymer powder
The use of geopolymer binder as cement replacement material can reduce the amount of carbon dioxide gas produced during the Portland Cement manufacturing process. However, the main issue of geopolymer binder is in the mixing process of sodium silicate and NaOH which requires specialized knowledge and strict supervision. This paper reports the effect of water binder ratio on strength development of fly ash geopolymer mortar using dry geopolymer powder. Fly ash with high calcium content was used as primary material. The dry geopolymer powder was prepared by wet mixing method which was made by drying a mixture of NaOH solution and limestone for 24 hours. The variations of water to binder ratio were 0.30, 0.35, 0.40, 0.45, and 0.50. Strength properties were measured by compressive strength at the age of 7, 14 and 28 days. The results showed that the water binder ratio significantly affect the strength development of geopolymer mortar prepared by dry geopolymer powder. The water binder ratio of 0.40 gives the highest compressive strength of 10.3 MPa at 28 days. This suggests that the use of dry geopolymer powder on geopolymer mortar production can overcome the difficulties of geopolymer mortar mixing on site.
The effect of water binder ratio on strength development of class C fly ash geopolymer mortar prepared by dry geopolymer powder
Wardhono Arie (author)
2019
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
European Patent Office | 2023
|GEOPOLYMER ACTIVATOR COMPOSITION AND GEOPOLYMER BINDER, PASTE AND CONCRETE PREPARED THEREWITH
European Patent Office | 2021
|GEOPOLYMER ACTIVATOR COMPOSITION AND GEOPOLYMER BINDER, PASTE AND CONCRETE PREPARED THEREWITH
European Patent Office | 2018
|