A platform for research: civil engineering, architecture and urbanism
Properties of cement composites based on limestone depending on their granulometric composition
Introduction. The use of limestone in cement compositions as an additional cementing agent solves both environmental and economic problems, namely, reduction of construction costs. In this regard, the study of the properties of the granulometric composition and volumetric content of cement composites, containing limestone, becomes increasingly important. The mission of this research is to optimize the properties of composite materials containing Portland cement and limestone by changing the granulometric composition of flour limestone. Materials and methods. Limestone, having three different Blaine milling fineness values of 250, 300 and 450 m2/kg, was used; its content reached 10, 15, 25 and 35 %. Cement and sand mortars were applied for testing purposes. The influence of the granulometric composition of limestone on the workability and compressive strength of composite cement was determined. Results. The effect of limestone on the limit shear stress becomes more pronounced when the amount of limestone increases to 25 and 35 %. This is most noticeable for limestone with a high content of fine fractions of 5–20 µm. The use of finely milled limestone increases the initial strength of the composite material. By adding 10 and 15 % of such limestone we can increase the strength by 16–20 %, and supplementary 25–35 % of limestone increases strength by 5–8 %. Strength enhancement is due to the reactivity of limestone and formation of calcium hydrocarbon aluminate 3CaO∙Al2O3∙СаСО3∙12H2O, which promotes formation of the crystal framework of the cement matrix. Additional formation of crystalline hydrates in the initial coagulation structure deteriorates the mortar workability, but increases its strength. Conclusions. The use of coarse-grained limestone significantly improves mortar workability, while the use of fine-grained limestone increases its content without reducing its strength. The granulometric composition of ground limestone shall be as close as possible to the granulometric composition of cement for the properties of composite materials containing Portland cement and limestone to be optimized.
Properties of cement composites based on limestone depending on their granulometric composition
Introduction. The use of limestone in cement compositions as an additional cementing agent solves both environmental and economic problems, namely, reduction of construction costs. In this regard, the study of the properties of the granulometric composition and volumetric content of cement composites, containing limestone, becomes increasingly important. The mission of this research is to optimize the properties of composite materials containing Portland cement and limestone by changing the granulometric composition of flour limestone. Materials and methods. Limestone, having three different Blaine milling fineness values of 250, 300 and 450 m2/kg, was used; its content reached 10, 15, 25 and 35 %. Cement and sand mortars were applied for testing purposes. The influence of the granulometric composition of limestone on the workability and compressive strength of composite cement was determined. Results. The effect of limestone on the limit shear stress becomes more pronounced when the amount of limestone increases to 25 and 35 %. This is most noticeable for limestone with a high content of fine fractions of 5–20 µm. The use of finely milled limestone increases the initial strength of the composite material. By adding 10 and 15 % of such limestone we can increase the strength by 16–20 %, and supplementary 25–35 % of limestone increases strength by 5–8 %. Strength enhancement is due to the reactivity of limestone and formation of calcium hydrocarbon aluminate 3CaO∙Al2O3∙СаСО3∙12H2O, which promotes formation of the crystal framework of the cement matrix. Additional formation of crystalline hydrates in the initial coagulation structure deteriorates the mortar workability, but increases its strength. Conclusions. The use of coarse-grained limestone significantly improves mortar workability, while the use of fine-grained limestone increases its content without reducing its strength. The granulometric composition of ground limestone shall be as close as possible to the granulometric composition of cement for the properties of composite materials containing Portland cement and limestone to be optimized.
Properties of cement composites based on limestone depending on their granulometric composition
Svetlana V. Samchenko (author) / Olga V. Alexandrova (author) / Anton Yu. Gurkin (author)
2020
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Granulometric properties of cement stabilized sands
Engineering Index Backfile | 1963
|Relationships between Cement Properties and Granulometric Distribution Uniformity
British Library Conference Proceedings | 1994
|Effect of granulometric composition of cement on properties of pastes, mortars, and concretes
Engineering Index Backfile | 1935
|