A platform for research: civil engineering, architecture and urbanism
Experimental Research on Backward Erosion Piping Progression
Internal erosion is caused by seepage body forces acting on the soil particles. One of the most dangerous modes of internal erosion at hydraulic structures is backward erosion piping, which usually initiates at the downstream end of a seepage path, e.g., at the downstream toe of the dam. The progress of backward erosion and the development of erosion pipes were tested in a newly developed laboratory device for three types of sand with grain sizes of 0/2, 0.25/2, and 0.25/1. The piezometric head along the gradually developing seepage “pipe” was observed by seventeen piezometers and seven pressure sensors. The seepage amount was measured by the volumetric method. The critical hydraulic gradient was determined and related to the soil porosity. The progression of the seepage path and relevant characteristics such as the piezometric and pressure heads and the amount of trapped sediment were observed by two synchronous cameras. Based on the analysis of the results of 42 tests, a new empirical formula for the backward erosion rate was proposed. The characteristics of lateral erosion were evaluated and compared with the available literature, which provided reasonably good agreement.
Experimental Research on Backward Erosion Piping Progression
Internal erosion is caused by seepage body forces acting on the soil particles. One of the most dangerous modes of internal erosion at hydraulic structures is backward erosion piping, which usually initiates at the downstream end of a seepage path, e.g., at the downstream toe of the dam. The progress of backward erosion and the development of erosion pipes were tested in a newly developed laboratory device for three types of sand with grain sizes of 0/2, 0.25/2, and 0.25/1. The piezometric head along the gradually developing seepage “pipe” was observed by seventeen piezometers and seven pressure sensors. The seepage amount was measured by the volumetric method. The critical hydraulic gradient was determined and related to the soil porosity. The progression of the seepage path and relevant characteristics such as the piezometric and pressure heads and the amount of trapped sediment were observed by two synchronous cameras. Based on the analysis of the results of 42 tests, a new empirical formula for the backward erosion rate was proposed. The characteristics of lateral erosion were evaluated and compared with the available literature, which provided reasonably good agreement.
Experimental Research on Backward Erosion Piping Progression
Jaromir Riha (author) / Lubomir Petrula (author)
2023
Article (Journal)
Electronic Resource
Unknown
Metadata by DOAJ is licensed under CC BY-SA 1.0
Wiley | 2013
|Progression of backward erosion piping with sudden and gradual hydraulic loads
Springer Verlag | 2022
|British Library Conference Proceedings | 2020
|Experimental investigation of initiation of backward erosion piping in soils
British Library Online Contents | 2012
|Experimental investigation of initiation of backward erosion piping in soils
Online Contents | 2012
|